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Abstract—Hive is the most mature and prevalent data ware-
house tool providing SQL-like interface in the Hadoop ecosys-
tem. It is successfully used in many Internet companies and
shows its value for big data processing in traditional industries.
However, enterprise big data processing systems as in Smart
Grid applications usually require complicated business logics
and involve many data manipulation operations like updates
and deletes. Hive cannot offer sufficient support for these while
preserving high query performance. Hive using the Hadoop
Distributed File System (HDFS) for storage cannot implement
data manipulation efficiently and Hive on HBase suffers from
poor query performance even though it can support faster data
manipulation. There is a project based on Hive issue Hive-5317 to
support update operations, but it has not been finished in Hive’s
latest version. Since this ACID compliant extension adopts same
data storage format on HDFS, the update performance problem
is not solved.

In this paper, we propose a hybrid storage model called
DualTable, which combines the efficient streaming reads of HDFS
and the random write capability of HBase. Hive on DualTable
provides better data manipulation support and preserves query
performance at the same time. Experiments on a TPC-H data set
and on a real smart grid data set show that Hive on DualTable
is up to 10 times faster than Hive when executing update and
delete operations.

I. INTRODUCTION

The Hadoop ecosytem is the quasi-standard for big data
analytic applications. It provides HDFS as a new file system
treating files as consistency unit, which makes it possible to
significantly improve batch data reading and writing [1]. Hive
is a data warehouse system based on Hadoop for batch analytic
query processing [2]. It has become very popular in Internet
companies.

The success and ease of deployment of Hive attracts
attention from traditional industries, especially when facing
large data processing challenges. Smart Grid applications, as
typical use cases, have to deal with enormous amounts of
data generated by millions of smart meters. For instance, the
Zhejiang Grid, a province-level company in China, currently
owns about 17 million deployed smart meters, which will
be increased to 23 million within 2 years. According to the
China State Grid standard, each of these meters needs to

record data and send it to the data center 96 times per day.
The system has to support efficient querying, processing and
sharing of these enormous amounts of data, which add up to 60
billion measurements per month only on province level. The
whole system needs to support user electricity consumption
computing, district line loss calculating, statistics of data
acquisition rates, terminal traffic statistics, exception handling,
fraud detection and analysis, and more amounting to around
100,000 lines of SQL stored procedures in total.

As requested by the State Grid, the computing task must
be finished from 1am to 7am every day, or it will affect the
business operations in working hours. In fact, the processing
cost of these stored procedures is so high that current solutions
based on relational database management systems (RDBMS)
deployed on a high performance 2*98 core cluster and an
advanced storage system can hardly complete the analysis in
time. Even with the current number of smart meters and a com-
parably low frequency of data collection of a single measure-
ment per day, the performance of current commercial solutions
is not acceptable after careful system optimizations carried out
by professional database administrators and business experts.
For instance, due to sophisticated join operations on 5 tables
that contain 60G data, around 1 billion data records in total,
the average processing time of the user electricity consumption
is around 3 hours. With increasing collection frequencies and a
growing number of installed meters the capacity of the current
solution will be exceeded soon. Considering the advantages of
Hadoop and Hive, such as superior scalability, fault tolerance,
and low cost of deployment they were chosen for the Zhejiang
Grid. The use of Hive makes pure statistical applications
in Zhejiang Grid more efficient. The performance of some
statistical query executed in a Hive cluster is significantly
better than that of current RDBMS cluster.

The main challenge in this use case is that current Hive
lacks the capability of supporting efficient data manipulation
operations. Although HIVE-5317 aims at implementing insert,
update, and delete in Hive with full ACID support, it has not
been released yet [3]. Meanwhile, judging from its design
document, its main focus is on full ACID guarantee rather
than performance optimization of update operation.

This makes it very difficult for current RDBMS-based
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applications to be migrated to a Hadoop environment. Tra-
ditional enterprises have to process complicated business logic
functions rather than only pure statistical applications. Many of
the enterprise level data processing applications are built using
complex stored procedures. Besides sophisticated analysis on
huge data, they contain a high ratio of update and delete
operations. As shown in our analysis of the Zhejiang Grid
smart electricity consumption information system, a typical
application, which can have more than 10,000 lines of stored
procedure code, includes 70% data manipulation operations
[4]. Without full update support, specifically missing UPDATE,
DELETE and the proprietary MERGE INTO operations, Hive
has to use INSERT OVERWRITE to rewrite huge HDFS files
even if only 1% of the complete data set is modified. As a
result, the lack of update support in Hive results in huge I/O
costs, which will cancel out all the performance benefits.

The weakness of the Hive data manipulation operations lies
in its storage subsystem: HDFS or HBase. HDFS is designed
for a write once read many scenario and is good at batch
reading. It treats a whole file as consistency unit without
any support of random writes. HBase provides record level
consistency to support efficient random reads and writes at the
cost of batch reading efficiency. Choosing either one of these
two as the underlying storage will sacrifice the benefits of
the other, resulting in severe side-effect when facing complex
workloads.

As described by the design document, the ongoing im-
plementation of Hive-5317 proposes an approach to support
data manipulation by using a base table and several delta
tables. Unmodified data is stored in the base table, and each
transaction creates a delta table. The read operation retrieves
a record from base table and merges it with corresponding
records in delta tables to get the up-to-date data view. However,
due to the usage of same storage format, the performance
problem is not solved in this approach.

To combine the benefits of file-level consistency and
record-level consistency, and thus to support high throughput
batch reads and efficient random writes in a unified way,
DualTable, a hybrid storage model is proposed in this paper. It
enables efficient reads and random writes through integration
of two different storage formats. A cost model-based adaptive
mechanism dynamically selects the most efficient storage
policy at run-time. The data consistency can transparently be
maintained by our UNION READ approach. The use of random
read capability of HBase makes the UNION READ efficient.
With the support of DualTable, update capability of Hive can
be enhanced without losing its batch read efficiency.

The Smart Grid use-case is presented in Section II. We
then give a detailed analysis of the weakness of data manipu-
lation operations in Hive in Section II-B. Section III presents
Dualtable. Section IV discusses DualTable’s cost model. The
implementation and evaluation will be given in Section V
and Section VI respectively. We will introduce related work
on Hive optimization in Section VII. Finally, conclusions and
future work are presented in Section VIII.

II. SMART GRID

The smart electricity consumption information collection
system is an very important part of smart grid, which acts as
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Fig. 1. The Architecture and Data Flow of the Smart Electricity Consumption
Information Collection System

a mediator between electricity consumers and the grid.

A. Smart Electricity Consumption Information Collection Sys-
tem

The smart electricity consumption information system
makes it possible for the energy provider to be aware of
the quasi-real-time electricity consumption and to improve its
businesses such as electricity supply and pricing policy through
deeply analyzing and utilizing the data it collects. Different
from traditional collection systems, which mostly focus on
support of billing processes based on once-per-month data
collection, it collects data hundreds of times per day and serves
as an intelligent service for diverse applications in the life cycle
of marketing, production, and overhauling of the grid as well
as a data source for interactive user service.

Considering its advantages, like cost-efficiency, fault tol-
erance, and scalability, the Zhejiang Grid introduced Hive
into its information collection system and leveraged it as
its big data processing platform. The platform contains 5
subsystems as pictured in Figure 1: the communication system
that collects data from smart meters and sends them to the
cloud after encoding, the information collection cluster, i.e.,
front end PC (FEP), that receives the data and does pre-
processing like decoding, the cloud data storage system that
receives data from the FEP cluster and stores it, the Hive and
MapReduce environment that processes analytic procedures
on the cloud storage, and an RDBMS-based archive database
that copes with daily data management transactions on archive
information of devices (smart metering devices and inter-media
devices), users, organizations, etc.

The data flow within the system is illustrated in Figure



1. The collection system gets smart metering data at fixed
frequency, currently every 15 minutes. In cases of missing data
or errors, the system manager re-collects data from specified
smart meters. The FEP Cluster usually appends huge amount
of the collected data to cloud data storage, thus, it needs a
very fast storage system to store the data. When recollection
happens, it needs to update the data set, which is marked as
(1).

The archive database communicates with data managers
and maintains data according to their requests. To support
grid data analysis, the archive information involved will be
copied to the cloud storage. And, the modified data needs to
be forwarded to the cloud storage via data synchronization
marked as (2).

The computing environment executes all data processing
procedures several times per day and the results it generates
are written back by the cloud storage system to the RDBMS
database for query and management. It reads data from the
cloud data storage and overwrites tables when needed. More-
over, as what has been implemented in the RDBMS, it needs
to update or delete only a small part of a table during data
processing. This is marked as (3).

From the perspective of the cloud storage system the
computing environment has to cope with data updating and
deleting besides data appending and inserting, which is cur-
rently supported by Hive system. In HiveQL, these operations
must be implemented using current INSERT OVERWRITE
operation. Since a table in the collection system is very big,
the OVERWRITING operation will be very costly, which in
turn heavily affects the efficiency, and sometimes exhausts the
resources and blocks the whole system.

B. Hive Data Manipulation Limitations

In real world enterprise data analysis use-cases, there is
a high ratio of update operations, as shown in Table I. The
following paragraphs will discuss the three update cases shown
in Figure 1 in detail respectively.

Frist, the SQL DML operations DELETE, UPDATE, and
MERGE INTO, which updates existing records and inserts
new records, are extensively used in smart grid applications
as illustrated in Figure 1 (3). For example, in the Zhejiang
Grid data processing system, there are 5 important application
scenarios: (i) power line loss analysis, (ii) electricity con-
sumption statistics, (iii) data integrity ratio analysis, (iv) end
point traffic statistics, and (v) exception handling. Each of
these was implemented in stored procedures in a traditional
RDBMS, the total count of SQL code lines is more than 10,000
per application scenario. Each of the operations is executed
more than 3 times per day. Table I summarizes the amount
of DML statements in the five core business scenarios. The
table shows that DML operations (UPDATE, DELETE, and
MERGE) amount to at least 50% in every scenario. Note that
Hive features efficient INSERT operations, which is why we
do not list INSERT in this table.

Due to its initial target use cases and limitation of HDFS,
Hive lacks adequate support for DML operations. Hive only
supports complete overwrite (INSERT OVERWRITE), append
(INSERT INTO), and delete (DROP) at table or partition

Scenario Total Delete Update Merge % DML

1 133 15 52 15 62
2 75 25 20 9 72
3 174 27 97 13 79
4 12 3 3 0 50
5 41 3 23 0 63

TABLE I. RATIO OF DML OPERATIONS IN GRID SCENARIOS

level. Although row-level UPDATE and DELETE operations
can be transformed into equivalent INSERT OVERWRITE
statements, it is a tedious and error-prone process, let alone
the complex logic correlations and huge number of DML
statements in an enterprise data analysis system.

To illustrate the challenges of transforming a data manip-
ulation statement from SQL to HiveQL, we show a typical
UPDATE statement in Listing 1 and its corresponding Hive-
QL translation in Listing 2 from the electricity information
collection system. The UPDATE statement is part of the
application scenario, which computes the total line loss of
an organization on a specific date from table tj tqxs r and
changes the value of column QRYHS in table tj tqxsqk r.
As a comparison, in order to update only one column, Hive
reads every record and a total of 22 columns from table
tj tqxsqk r, conducts a left outer join with table tj tqxs r,
and finally, writes back all 23 columns of every record into
table tj tqxsqk r using INSERT OVERWRITE. It is obvious
that accessing the irrelevant columns and records incurs high
overhead. Using INSERT OVERWRITE, the cost of a update
operation is always proportional to total amount of data instead
of the amount of modified data. This leads to a significant
performance penalty for Hive if used as enterprise data analysis
systems, which typically contain tables with huge number of
records and columns. Especially, when only a small portion of
records and columns are updated or deleted per operation. In
addition, the use of INSERT OVERWRITE is not as intuitive
as the SQL’s counterpart UPDATE.

UPDATE tj_tqxsqk_r t
SET t.QRYHS = (SELECT SUM(k.tqyhs)

FROM tj_tqxs_r k
WHERE t.rq = k.tjrq AND k.glfs = t.glfs
AND k.zjfs = t.cjfs AND k.dwdm = t.dwdm
AND k.sfqr = 1)

WHERE t.rq = v_date;

Listing 1. SQL Update Statement

INSERT OVERWRITE TABLE tj_tqxsqk_r
SELECT t.dwdm,t.rq,t.jb,t.xslzctqs,t.xslcdtqs,

t.xslwftqs,t.ztqs,t.xslzcyhs,t.zyhs,
t.tqxsksl,t.glfs,t.cjfs,t.qfgl,
t.ljqfgyhs,t.ljfgyhs,t.xslbkstqs1,
t.xslbkstqs2,t.xslksyhs,t.xslzcyhs_x,
t.xslksyhs_x,
IF (t.rq = ${v_date}, g.qryhs, t.qryhs)
AS qryhs, t.gxdyyhs

FROM tj_tqxsqk_r t LEFT OUTER JOIN (
SELECT SUM(k.tqyhs) AS qryhs,

k.tjrq,k.glfs, k.zjfs, k.dwdm
FROM tj_tqxs_r k

WHERE k.sfqr = 1
GROUP BY k.tjrq,k.glfs, k.zjfs,k.dwdm) g
ON t.rq = g.tjrq AND g.glfs = t.glfs
AND g.zjfs = t.cjfs AND g.dwdm = t.dwdm

Listing 2. Hive Update Statement
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Unfortunately, in real enterprise data processing systems,
data columns and records are fairly big, while the number
of columns and records that need to be modified in one
statement are limited. In our analysis, we found that most
of the tables in the smart grid system contain more than 50
columns, but the columns being modified in one statement
are less than 3 in average. In most cases, the ratio of records
that need to be modified is less than 1%. Therefore, the
INSERT OVERWRITE strategy will cause a large percentage
of redundant writes. For example, in an energy consumption
table or partition containing 1.8 billions records, only a few
hundred records need to be modified for a recurrent processing
task. Overwriting the whole table file will heavily degrade the
efficiency of the query.

Second, upgrading devices or modifying user information
leads to change of archive data as shown in Figure 1 (2). In the
Zhejiang Grid information system, even in extreme cases, there
are no more than 500 out of 22 million devices changed on
a single day. Thus the ratio of upgrading devices information
is also very small. However, it takes more than 15 minutes
to rewrite the device information in the Cloud Data Storage
System if Hive’s overwrite operation is utilized.

Finally, the update operations of data recollection shown
in Figure 1 (1) also only affect a very small amount of
data, approximately less than 2000 records in a single update
operation, which yields an update ratio of less than 0.01%.
However, rewriting the electricity consumption table in the
Cloud Data Storage System will take more than half an hour
with our current cluster setting.

Apache Hive also plans to support data modification oper-
ations [3]. We will give a detailed comparison to our technique
in Section V. All these instances reflect the same general
problem of the lack of efficient update operations in Hive.
In the next section, we present DualTable, our solution to this
problem.

III. DUALTABLE

DualTable is a system that combines the strong read
performance of HDFS with the update performance of HBase.
An abstract view of the architecture can be seen in Figure

2. Data is stored in two locations, the Master Table and the
Attached Table. The Master Table is the main data storage,
it is optimized for batch reading and initially contains all
the records in the table; the Attached Table is an additional
storage location for maintaining information about the updated
or deleted records.Besides Hive’s original data manipulation
operations INSERT INTO, CREATE, DROP, and LOAD,
DualTable also supports the additional operations UNION
READ, UPDATE, DELETE and COMPACT;the Cost Model
is used to select an implementation plan for UPDATE and
DELETE operations and it includes separate cost models for
each operation.

Each DualTable contains one Master Table and one At-
tached Table. Each row recorded in DualTable has a unique
ID in the table scope, which links the record data in the Master
Table and the Attached Table. When an UPDATE or DELETE
operation is executed, the system will choose an implementa-
tion plan based on the cost model, either an OVERWRITE Plan
or an EDIT Plan. The OVERWRITE Plan rewrites the Master
Table using Hive’s original INSERT OVERWRITE syntax
while the EDIT Plan writes modification information to the
Attached Table. In order to combine the data from the Master
Table and the Attached table, a UNION READ operation is
used, it generates a merged view. When the Attached Table is
too large and the merging becomes too expensive, the Attached
Table is compacted into the Master Table and cleared using the
COMPACT operation.

A. Master Table

The Master Table stores the main part of the data. The
storage used for this table must provide high performance
batch read and write. It can be implemented using HDFS,
Google File System [5], the Quantcast File System [6], or
optimized file formats such as ORC [7].

B. Attached Table

The Attached Table stores information about the new
values for updated record fields or delete markers for deleted
records. All these record modification data are associated with
their record IDs so that they can be merged with the record
data in the Master Table. The storage used for this table should
provide high performance random read and write. Possible
candidates are, for example, HBase, MySQL, and MongoDB.
Due to the good integration, we will only discuss the HBase-
based implementation.

C. DualTable Operations

Below we will characterize the basic storage operations in
DualTable.

• CREATE and DROP: Using the CREATE operation,
DualTable will create an Attached Table and a Master
Table. Analogously, it will delete the Master Table and
the Attached Table when a DROP operation is issued.

• LOAD and INSERT: LOAD and INSERT are the same
operations as in original Hive. Data are loaded and
inserted into the Master Table. A unique ID will be
assigned to each Master Table file, which is necessary
to generate a unique ID for each row record. See Section
V for further details.



• UPDATE and DELETE: When an UPDATE or
DELETE operation is issued, the cost model will be used
to choose the most efficient implementation plan from
OVERWRITE Plan and EDIT Plan. The OVERWRITE
Plan will execute Hive’s INSERT OVERWRITE and
replace the existing Master Table and Attached Table
with a newly generated Master Table and an empty
Attached Table, while the Edit Plan will add the updated
information into the Attached Table. For an UPDATE
operation, it will add the new value for the updated record
fields. For a DELETE operation, it will add a DELETE
marker to a corresponding record ID. In both UPDATE
and DELETE the Master Table will not be changed.

• UNION READ: UNION READ reads and merges data
from Master Table and Attached Table using the record
ID. In order to make the merge process more efficient, we
keep record IDs in the Master Table and Attached Table
sorted, and implement a simple Map Reduce algorithm
using a divide-and-conquer strategy.

• COMPACT As more data modification information is
stored in the Attached Table with the EDIT Plan, the
Attached Table grows. The more data is in the Attached
Table, the higher the cost of the UNION READ operation,
since it needs to read and merge data in the Master
Table and the Attached Table. COMPACT does a UNION
READ through the existing tables and creates a new
Master Table by using INSERT OVERWRITE operation,
which replaces the existing Master Table and Attached
Table. All the other operations will be blocked during
COMPACT. COMPACT can be scheduled to off-line
hours or issued manually if the cost of a UNION READ
is too expensive.

IV. COST MODEL

DualTable uses a cost model to choose the most efficient
implementation plan, OVERWRITE or EDIT, for UPDATE
and DELETE operations. The cost of a plan consists of two
parts:

1) cost of reading and writing the Master Table
2) cost of reading and writing the Attached Table.

To determine the best implementation, the cost model esti-
mates the costs of both OVERWRITE and EDIT by computing
the cost of data reading and writing separately. By subtracting
one from the other, the best plan can be found. If the result is
positive, it means that EDIT plan is cheaper and thus it will
be chosen. Otherwise, the OVERWRITE plan will be used. To
calculate the costs, we make the following assumptions:

a) Notation 1: In a storage table S, the cost of reading
or writing data of the amount D is denoted as CS

Read(D) and
CS

Write(D), where S can be M (Master Table) or A (Attached
Table).

b) Assumption 1: We assume that the cost of reading
and writing is directly proportional to the data volume read-
/written. This is denoted as CS

Read(λD) ≈ λCS
Read(D), where

λ ∈ (0, 1). The same holds for CS
Write(D).

c) Notation 2: The total cost of a plan P is denoted as
CostP , where P can be OVERWRITE or EDIT.

d) Assumption 2: CostP equals ”modification cost”
plus ”following read cost”, where ”modification cost” indicates
the total cost to execute UPDATE or DELETE using plan P ;
”following read cost” indicates the cost to read the whole table
for k times after UPDATE or DELETE completes.

Given a DualTable T containing data of size D, suppose we
execute one modification on T and then read the table k times,
the corresponding cost models for UPDATE and DELETE are
illustrated as follows.

e) UPDATE Cost Model: Suppose the ratio of data
updates is denoted as α, α ∈ (0, 1), the costs of the OVER-
WRITE plan and EDIT plan are shown below, each consisting
of two parts:

Update Cost Following Read Cost

OVERWRITE CM
Write(D) kCM

Read(D)
EDIT CA

Write(αD) k(CA
Read(αD) + CM

Read(D))

Let CostU be the cost of OVERWRITE plan minus the cost
of EDIT plan:

CostU = CostOVERWRITE − CostEDIT

= CM
Write(D) + kCM

Read(D)− CA
Write(αD)

− k(CA
Read(αD) + CM

Read(D))

= CM
Write(D) + kCM

Read(D)− αCA
Write(D)

− kαCA
Read(D)− kCM

Read(D)

= CM
Write(D)− α(CA

Write(D) + kCA
Read(D)) (1)

The update ratio α can be estimated using historical
analysis of the execution log or can directly be given by the
designer. The number of successive read operations after an
update k can directly be set by the designer, or inferred from
the HiveQL code.

Using the model, it is clear that when α and k is small,
CostU can be positive. This means that the EDIT plan is more
efficient when the update ratio and the number of consecutive
reads are small. On the other hand, when the update ratio
and the number of consecutive reads become too large, the
OVERWRITE plan is a better choice.

As an example, suppose we use HDFS for hosting the
Master Table M and HBase for the Attached Table A, the data
volume D = 100GB, update ratio α = 0.01. The rate of HDFS
writes using multiple Map tasks adds up to 1GB/s. The rate
of HBase reading and writing add up to 0.5GB/s and 0.8GB/s,
respectively. Suppose we read continuously for 30 times after
the updating operation, the cost model can be computed as
follows:

CostU = CostOVERWRITE − CostEDIT

= CM
Write(D)− α(CA

Write(D) + kCA
Read(D))

= 100GB/1GBps− 0.01 · (100GB/0.8GBps

+ 30 · 100GB/0.5GBps)

= 38.75s



As in this example, the time consumption of EDIT plan is
shorter than that of OVERWRITE plan. We will choose EDIT
as a consequence.

f) DELETE Cost Model: Suppose the ratio of records
being deleted is β and β ∈ (0, 1). Suppose the average data
size of each row is d, the size of a DELETE marker is m,
then the data size of deleted data, denoted as βD, is βD

d m.
The cost of OVERWRITE and EDIT plans are shown below:

DELETE Cost Following Read Cost

OVERWRITE CM
Write((1− β)D) kCM

Read((1− β)D)

EDIT CA
Write(

βDm
d ) k(CA

Read(
βDm

d ) + CM
Read(D))

Let CostD be cost of OVERWRIT plan minus the cost of
EDIT plan. It can be computed as follows:

CostD = CostOVERWRITE − CostEDIT

= CM
Write((1− β)D) + kCM

Read((1− β)D)

− CA
Write(

βDm

d
)− k(CA

Read(
βDm

d
) + CM

Read(D))

= (1− β)CM
Write(D) + βkCM

Read(D)− βCA
Write(D)

− kβCA
Read(

Dm

d
)− kCM

Read(D)

= CM
Write(D)− β(CM

Write(D) + kCM
Read(D)

+
m

d
CA

Write(D) + k
m

d
CA

Read(D)) (2)

Where m is a constant value, which can be determined via
data sampling. Estimation of β is similar to that of α in the
UPDATE cost model. CM

Write(D), CA
Write(D), and CA

Read(D) can
be computed the same way as in UPDATE cost model.

Using the model, it is obvious that when β and k are
small, CostD is positive. This means that the EDIT plan
is more efficient when the delete ratio and the consecutive
number of reads are small. On the other hand, when the delete
ratio and the consecutive number of reads become larger, the
OVERWRITE plan becomes more efficient.

V. IMPLEMENTATION DETAILS

We have implemented DualTable with Apache HBase,
HDFS and Hive. In this section, we discuss technical details
about our extensions to Hive, the data layout and the record
ID management.

A. Extensions to Hive

Hive provides multiple abstractions that enable extension-
s: the InputFormat and OutputFormat classes are used in
a MapReduce job to read and write data rows. Hive uses
Serializer and Deserializer classes to parse records from data
rows. Hive supports user defined table functions (UDTF) to
add new functionality in statements to manipulate data.

As shown in Figure 3, we use HDFS for the Master Tables
and HBase for the Attached Tables and a system wide metadata
table. Each DualTable contains an HDFS-based Master Table
and an HBase-based Attach Table.

We developed custom InputFormat, OutputFormat, Serial-
izer, and Deserializer classes with UNION READ and record

DualTable Command Interface

Extended Hive DualTable Parser

Hive Command 
Interface

Cost Model

Hive Compiler

Hadoop MapReduce

HBase HDFS

U
PDATE/DELETE 

U
DTF Function

DualTable
InputForm

at/ 
O

utputForm
at

DualTable
Serializer/ 

Deserializer

DualTable
Schema

Attached 
Table X

Attached 
Table Y

Master 
Table X

Master 
Table Y

Fig. 3. DualTable Implementation on Hive

ID management logic for DualTable. Additionally, two UDTFs
implement the EDIT Plans for UPDATE and DELETE. The
UPDATE UDTF takes the name of the updated table, the
updated columns and the new values as input and stores the
update information in HBase. The DELETE UDTF only takes
the name of the table and puts a DELETE marker for each
deleted row in HBase.

We have added UPDATE and DELETE commands to
HiveQL. If a HiveQL statement contains an UPDATE or
DELETE command, it will be sent to the DualTable parser,
otherwise, it will go to the original Hive parsing procedure. For
these two DML commands the parser will choose to generate
a Hive-compatible statement using INSERT OVERWRITE or
our UDTFs, based on the cost evaluator. The former one is for
an OVERWRITE plan, and the later one for an EDIT plan.

The cost evaluator is in charge of cost evaluation based on
our cost model as described above. The DualTable metadata
manager collects and manages information required for cost
evaluation.

B. Data Layout and Record ID Management

We use the ORC file format in HDFS for the Master Table
and one Master Table may consist of multiple ORC files in
an HDFS folder. Besides the ORC file format’s handy features
like compression and Hive type support, we chose it for two
important reasons:

1) We maintain an incremental integer file ID for each
DualTable in the system wide metadata table. Whenever
a MapReduce mapper creates a new file, it retrieves and
stores a unique ID in the file metadata.

2) We can retrieve row numbers when reading data rows.The
row numbers are computed during reading operations
and have no storage cost, which makes it a perfect
way to maintain unique IDs for each DualTable row
record. A DualTable record ID is generated on read by
concatenating the file ID and record’s row number, which
makes the record ID unique in one DualTable.



In the HBase-backed Attached Table, we use DualTable record
IDs as HBase row keys. For UPDATE information, the updated
field’s column number (as maintained by Hive) serves as
HBase column qualifier and the new field value as HBase
cell value. For DELETE information, only a delete marker
(a special HBase cell) is stored in the deleted record’s ID row.

With the data layout and record ID generation policy above,
sequential record IDs within an ORC file are in ascending
order. Meanwhile, record IDs stored as row keys in HBase are
already sorted. This makes it simple and straightforward for a
Mapper to merge data in the Master Table and the Attached
Table for UNION READ operations because it only needs to
read through and merge two sorted ID lists.

C. Comparison to Hive ACID Extensions

Apache Hive also plans to support data modification op-
erations. They published a design document in 2013, but the
up-to-date version Hive-0.13, which is released in April 2014,
does not support data update or delete yet. The feature is still
under development [8]. Due to the fact that Hive-0.13 does not
support UPDATE/DELETE statement, we could only compare
the two systems from conceptual perspective.

DualTable puts the data modification information into a
HBase table, which is called Attached Table; The original data
is saved into Master Table; Each Master Table has only one
Attached Table. The read operation accesses both Master Table
and Attached Table to get the original data and its modification
information, then combines them to get the up-to-date data
view; For write operation (UPDATE or DELETE), DualTable
could either overwrite the whole Master Table or just update
the Attached Table, and it makes use of a cost-model to make
decision. When the size of Attached Table exceeds a threshold,
DualTable merges it with its Master Table.

Hive puts both the original data and modification infor-
mation into the same Hive database [9]. They are called base
table and delta tables, respectively. Each transaction creates
a new delta table for a base table. Therefore, a base table
could have multiple delta tables. The read operation retrieves
a record from base table and merge sorts it with corresponding
records in delta tables to get the up-to-date data view. The write
operation puts the whole updated record into delta tables, even
if only one cell is changed. Hive supports two compact modes,
minor compact merges all delta tables belonging to the same
base table into a single delta table; and major compact merges
the delta tables with their corresponding base table.

We compare DualTable and Hive from three aspects: First,
their objectives are different. Hive aims to support transac-
tion and full ACID guarantee [9][10]. DualTable focuses on
optimization of data update performance for our smart grid
industrial scenarios.

Secondly, their storage policies are different. DualTable
employs hybrid storage architecture to make full advantage
of both HDFS and HBase. In this way, DualTable could im-
prove random write performance significantly without obvious
negative impact on sequential read. While Hive puts both
the original data and modified information into HDFS. For
data read operation, Hive merge sorts the base table with all
relevant delta tables to get the up-to-date view. Since delta

table is stored as plain Hive tables and updated records are all
appended to the tables, the reader has to scan them sequentially
and selects latest updated values for particular record. On the
contrary, DualTable retrieves a row from master table, then
randomly accesses HBase based Attached table to get changed
record and its latest value according to the row ID. They are
combined in the UnionRead operation. In addition, DualTable
can make use of HBase’s multiple-version feature to track data
change history.

Third, DualTable supports runtime selection of update pol-
icy. Our experiments find that overwriting the whole table with
INSERT OVERWRITE statement sometimes performs better
when update ratio exceeds a threshold. Therefore, DualTable
incorporates a cost model to decide whether to put data
modification information into the Attached Table or overwrite
the whole table. However, Hive always updates the delta tables.
It could not make better decisions at runtime.

VI. EVALUATION

In following sections, we compare DualTable with Hive in
terms of query performance and performance of update and
delete operations by experiments.

We conduct two sets of experiments. The first set of
experiments uses a dataset from the Zhejiang Grid and runs
on a cluster of 26 nodes; In order to further assess the generic
applicability of DualTable, we perform the second set of
experiments with TPC-H dataset on a 10-node cluster. Each
node is equipped with 8 cores, 16 GB memory, and 250 GB
hard disk. All nodes run CentOS 6.2, Java 1.6.0-41, Hadoop-
1.2.1 and HBase-0.94.13. We implement DualTable based on
Hive-0.11. Since DualTable is implemented based on ORC
file format, we set Hive to use the same file format for fair
comparison. JobTracker, Namenode and HMaster run on the
same node. TaskTracker, Datanode, and RegionServer run on
other nodes. Every worker in Hadoop is configured with up to
6 mappers and 2 reducers. HDFS is configured with 3 replicas
and 64 MB chunk size. We run all experiments three times and
report the average result. The metric used in our experiment
is run time.

A. Evaluation of Real Grid Workloads

We carried out our performance evaluation with production
data collected from electricity information collection system
deployed in the Zhejiang Grid of the China State Grid, which
is the largest electric utilities company in the country. In order
to make the experiment easy to conduct and the run time
controllable, the total data set we use is around 64 GB. To
avoid use of memory cache, we reset the system every time
when we finish one experiment.

Since the IO cost of Hive will increase nearly linearly with
the growth of data size, it is obvious that the performance trend
using this workload is typical and will reflect the trend in
bigger or smaller workloads. The six tables involved are listed
in Table II. We also list some representative columns involved
in our experiments. We have also tested HBase-based Hive,
which can also support update and delete operations rather than
Hive’s default INSERT OVERWRITE operation. The TPC-
H workload running on a 10-node setting shows that HBase-
based Hive is much slower than Hive itself and DualTable,



Table # Records Columns in Experiments

yh gbjld 7112576 dwdm: organization code; gddy: voltage; hh: fam-
ily id; sfyzx: withdrawn or not

zd gbcld 7963648 cldjh: measure point id; zdjh: terminal code; dwd-
m: organization code;

zc zdzc 74104736 dwdm: organization code; zdjh: terminal code;
zzcjbm: manufacture code; cjfs: collection method;
zdlx: terminal type;

rw gbrw 34045664 xfsj: issued time; rwsx: task property; cldh: mea-
sure point id;

tj gbsjwzl mx 239032928 yhlx: user type; rq: date; dwdm: organization code;
cjbm: manufacture code;

tj dzdyh 9805312 zdjh: terminal code;
TABLE II. SCHEMA EXCERPT OF THE REAL STATE GRID DATA SET

respectively. This is the reason why we do not consider HBase-
based Hive as a comparison target system in this section.

Performance Overhead of Queries: In the first experi-
ment, we assess read performance of DualTable and Hive using
two typical SELECT statements of State Grid business logic.
The first statement retrieves records from table yh gbjld ac-
cording to some predicates, in which yh gbjld joins with table
zc zdzc and table zd gbcld. The second statement calculates
total number of records in table tj gbsjwzl mx. The Attached
Table of DualTable is empty in this experiment. Both Hive
and DualTable scan the whole table to filter records. Since the
Attached table is empty, DualTable does not need to merge
the original record from Master Table with data modification
information. Figure 4 shows the results. For statement #1,
Hive takes 111 minutes and DualTable takes 120 minutes.
The performance difference is about 8%, which is attributed to
the overhead incurred by the Attached Table (although it does
not contain any data, the function invocation is inevitable).
For Statement #2, Hive takes 89 seconds and DualTable takes
101 seconds. Hive outperforms DualTable about 12%, which
again is attributed to overhead of the Attached Table. This
experiment shows that the overhead of the Attached Table is
fairly low.

Performance of Updates: This experiment demonstrates
how Hive and DualTable perform when handling update and
delete operation. It is very common in the business logic
of State Grid to change or remove records of some specific
dates. We mimic this behavior in this test. The tables involved
contain roughly uniformly distributed data of 36 days, and
the experiment starts by changing data of one day ( 1

36 ) until

data of 18 days ( 1836 ). In order to verify the effectiveness
of the cost model, we first run DualTable with cost-model
and, as a comparison, DualTable in EDIT mode, which means
DualTable always writes data modification information into the
Attached Table. Figure 5 shows the performance of DualTable
and Hive for an update operation. It can be seen that Hive’s
execution time does not fluctuate much with variation of data
modification ratio, since Hive always overwrites the whole ta-
ble. For DualTable, the cost of writing update information into
the Attached Table is proportional to the amount of updated
data. When the update ratio is smaller than 6

36 , the cost model
selects EDIT instead of OVERWRITING, so DualTable EDIT
overlaps with DualTable cost-model; the cost of writing into
Attached table is less than overwriting the whole data, which
makes DualTable perform significantly better than Hive. When
data update ratio increases, the execution time of DualTable
EDIT mode grows drastically. When data update ratio exceeds
6
36 , DualTable switches to OVERWRITE mode, and DualTable

takes a little longer than Hive to run the UPDATE statement
due to its own overhead.

Figure 6 depicts a performance comparison of delete oper-
ations on Hive and DualTable with various data deletion ratios.
Hive’s overwrite the whole table approach results in reduction
of data written into HDFS when data deletion ratio increases,
so its run time is inversely proportional to the delete ratio.
Hive’s run time drops from 772 seconds to 572 seconds when
the ratio raises from 1

36 to 18
36 . In the other hand, DualTable

EDIT puts a DELETE marker for each removed row into the
Attached Table. As a result, its run time increases with the
data deletion ratio. When 1

36 of the data is deleted, DualTable
outperforms Hive by a factor of 3. With a delete ratio smaller
than 10

36 , the cost model selects EDIT instead of OVERWRITE.
Therefore, DualTable EDIT overlaps with DualTable cost-
model. After that, the cost of writing DELETE markers into
HBase exceeds the overhead of overwriting the whole table,
and DualTable starts to adopt the overwriting approach to
accomplish data deletion. There is a small overhead to run
the DELETE statement.

Impact of Size of Attached Table: The previous exper-
iment evaluates update performance of DualTable and Hive
with various data modification ratios. We analyzed the State
Grid workload and found that changed tables will be retrieved
in subsequent operations to get the latest values. To reflect this
in the experiments, we issue a SELECT query after UPDATE
and DELETE operations like we did in last experiment, to
show how the size of Attached table impacts performance of
following UnionRead operations.

Figure 7 shows the run time of a SELECT query following
the UPDATE operation used in the previous experiment. Hive
performance does not fluctuate much with the UPDATE ratio,
since the UPDATE operation does not change data amount
in the related Hive tables. In this experiment, DualTable is
always slower than Hive. The performance difference is very
small when only one specific day’s data is updated; however,
DualTable takes more time for UnionRead operation with
raising UPDATE ratio, and it is 2.7 times slower than Hive
when the UPDATE ratio grows to 18/36. This is because
DualTable EDIT mode puts all UPDATE information into the
Attached Table, and the following UnionRead operation needs
to first read the original record from the Master Table, then
merge with the corresponding record in the Attached Table to
get the latest value. Figure 8 demonstrates the total time taken
by the UPDATE operation and the following SELECT query.
The trend shown in this figure and its explanation is similar
to Figure 5 and, therefore, we do not repeat it here for space
limitation.

Figure 9 and Figure 10 depict the run time of a SELECT
query following the DELETE operation used in the previous
experiment. These results are similar to the last one we
just explained, therefore, we do not repeat it here for space
limitation.

More Experiments: As mentioned above, the data mod-
ification ratio is rarely higher than 10% in the data analysis
system of the State Grid. In order to further verify the effec-
tiveness of DualTable regarding State Grid workload, we ex-
tracted four representative UPDATE statements and DELETE
statements from line loss and low voltage calculation modules.
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Fig. 6. Delete Performance Comparison for
Various Data Modification Ratios
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Fig. 7. Run Time of a SELECT Query Follow-
ing the UPDATE Operation
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Following the UPDATE Operation
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Fig. 9. Run Time of a SELECT Query Follow-
ing the DELETE Operation

Stmt Semantics Update Ratio Hive (sec) DualTable (sec) Improvement

U #1 Set the area code in which an outage event happens at some specified time to a new value. 2% 159.81 51.39 311%
U #2 When the outage recovery time is earlier than the start time, set the outage recovery time to a value

which indicates an error.
5% 104.90 60.81 173%

U #3 set the sampling rate of a day to a new value for a specified date and specified user type. 0.1% 389.19 47.52 819%
U #4 Set the collection method of a specified day and specified user type to a new value. 3% 1577.87 161.73 976%
D #1 Delete records from table tj sjwzl y for a specified month. 4% 46.26 22.47 206%
D #2 Delete records from table tj tdjl for a specified area code. 5% 102.04 47.26 216%
D #3 Delete records from table tj gk for a specified organization code and a marker. 3% 147.87 34.97 423%
D #4 Delete records from table tj tdjl for a specified terminal code and outage time. 0.01% 140.94 29.47 478%

TABLE IV. PERFORMANCE RESULTS FOR REAL STATE GRID WORKLOAD

Table # Records Columns in Experiments

tj tdjl 58494976 tdsj: outage time; qym: area code; zdjh: terminal
code;

tj td 33036288 hfsj: recovery time; tdsj: outage time;
tj sjwzl r 73569360 rq: date; rcjl: sampling rate of a day; yhlx: user

type;
tj dysjwzl mx 382890014 rq: date; sfld: miss a point or not; cjfs: collection

method;
tj sjwzl y 2586120 rq: date
tj gk 30655920 rq: date; dwdm: organization code;

TABLE III. SCHEMA EXCERPT OF THE STATE GRID DATA SET

The six tables involved are listed in Table III. Their total size
is 70 GB. We also list some representative columns involved
in the experiments. Their data modification ratio ranges from
0.01% to 5%. We compare DualTable and Hive in terms of
query run time, and calculate the performance improvement
of DualTable in Table IV(U is abbreviation of UPDATE, D
is abbreviation of DELETE in the table). We can see that
DualTable outperforms Hive an order of magnitude for all the
8 operations thanks to its cost model and the Attached Table
storage model.

B. TPC-H Workloads Evaluation

Besides the above performance evaluation conducted with
real production data, we further assessed the generic appli-
cability of DualTable using the standard TPC-H queries and

data.

We conduct a number of experiments to measure the read
and update performance of DualTable. When we use update
or delete in HBase-based Hive, we implement the EDIT plan
similar to DualTable using user defined functions instead of
relying on the INSERT OVERWRITE statement.

The tables lineitem and order of TPC-H were used, these
are the two largest tables of the TPC-H data set. In the TPC-
H 30GB data set that was used, they have 0.18 billion rows
(i.e., 23GB) and 45 million rows (i.e., 5GB) respectively. We
modify TPC-H queries to add update and delete operations.

In the first experiment, we use 3 different queries to
estimate the read efficiency of DualTable. Query a is TPC-
H query Q1, Query b is TPC-H Q12, and Query c is a count
on the whole lineitem table. The Attached Table is empty in
this experiment. Thus, we measure DualTable’s basic overhead,
which is negligible as can be seen in Figure 11.

In the second experiment, we run 3 typical update state-
ments. DML-a updates 5% of lineitem, DML-b deletes 2%
of lineitem, and DML-c joins lineitem and order and updates
16% of order. At the beginning of the experiment, the Attached
Table is empty. The performance results can be seen in Figure
12. As can be seen in the figure, DualTable is most efficient
for all updates, since it avoids unnecessary writes that Hive on
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Data Set
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Fig. 12. Update Performance on 30GB TPC-H
Data Set
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Fig. 13. Update Performance for Different
Workloads
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Fig. 14. Delete Performance for Different
Workloads
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Fig. 15. Overhead of Update Operations for
Reads
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Fig. 16. Update and Successive Read
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Fig. 17. Overhead of Delete Operations for
Reads
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Fig. 18. Delete and Successive Read

HDFS would have to perform, but features faster reads than
HBase.

To assess the cost of DualTable’s performance for different
ratios of deletes and updates, we perform an additional ex-
periment. Starting with an empty Attached Table, we execute
updates, which randomly update one field in 1% to 50% of the
records in lineitem. In Figure 13, the performance for Hive,
DualTable in EDIT mode, and DualTable with the cost model
can be seen. As expected, the performance of updates in Hive
is constant for all update ratios, while it increases with the
amount of data changed in both versions of DualTable. The
cross-over point is reached at an update ratio of 35%, when
overwriting becomes cheaper than storing delta records in the
Attached Table. The cost model based DualTable changes to
the OVERWRITE plan when the Attached Table becomes too
costly and thus has a similar performance to Hive from that
point while the pure EDIT plan version gets more expensive.

In Figure 14, the same experiment is repeated for deletes.
Unlike in the update case, the workload for Hive becomes less
with increasing delete ratio, since less data has to be written.
Therefore, the cross-over point is reached at a lower delete
ratio. The delete cost model again finds the correct ratio to
switch plans.

In Figure 15, the overhead of reading data from the
Attached Table is shown. In the experiment, we executed a

full table scan after updating 1% to 50% of the lineitem
table. While the read performance of Hive is unaffected by the
updates, since data is always rewritten, the DualTable UNION
READ operation incurs additional load to read data from both
HDFS and HBase and merge it. The overhead in the update
case is linear to the amount of data in the Attached Table. In
this experiment, no cost model was used. In Figure 16, the total
cost of the update operation and an additional read are shown.
This is the most realistic case, where updates are performed
and then the updated data set is analyzed. The results are
similar to the pure update experiments, with the difference
that the cross over point is slightly below 35% update ratio,
which is due to the additional overhead incurred for merging
the data from the Master Table and the Attached Table in the
read query. The more often the data is read the lower the cross
over point will be, which underlines the importance of the cost
model to ensure the best possible plan.

We repeated this experiment for the delete operation. The
results can be seen in Figure 17 and Figure 18. The results
confirm the results from previous experiments. Entries in the
Attached Table incur an overhead for read operations, which
is more pronounced for high delete ratios since in Hive less
data has to be read for the query part, while DualTable keeps
the original records and adds delete markers. Nevertheless, for
delete ratios below 30% DualTable is always more efficient
than Hive. The cost model always chooses the best plan.



VII. RELATED WORK

Hive provides HiveQL, a declarative query language, which
exposes an SQL-like interface for Hadoop [2]. Internally, Hive
first translates HiveQL into a directed acyclic graph (DAG) of
MapReduce jobs and then executes the jobs in a MapReduce
environment.

From this point of view, there are three aspects or levels
of optimization goals in Hive: optimization of the query
plan, especially when general SQL needs to be run in this
environment; optimization of the execution system, mostly
including optimization of MapReduce and development of
compatible systems; and I/O optimization, which may include
optimized data placement, index creation, etc. Even though
work in one aspect may also involve contributions to some
other aspects, related work can be categorized into these three
classes.

A. Query Plan Optimization

Hive itself only supports some basic rule-based optimiza-
tion such as predicate push down and multiple join strategies
including MAP-join and Sort-Merge-Bucket join.

YSmart can detect correlated operations within a complex
query, and use a rule-based approach to simplify the whole
query structure to generate a MapReduce plan with minimal
tasks [11]. YSmart has been merged into the official Hive
version1. Sai Wu proposed a Hive optimizer called AQUA [12],
which can categorize join operations in one query into several
groups and choose the optimal execution plan of the groups
based on a predefined cost model. Xiaofei Zhang presented an
approach to optimize multiple path join operations in order to
improve the overall parallelization [13]. Harold Lim presented
a MapReduce workflow optimizer called Stubby, which uses a
series of transformation rules to generate a set of query plans
and find the best one [14]. All of them attempt to solve the
problem of translating SQL to MapReduce and reorganizing
the MapReduce DAG to yield better performance, focusing
on optimization at MapReduce level. Furthermore, QMapper
considers variations of SQL queries and their influences on
query performance [15]. QMapper uses a query rewrite-based
approach to guide the translation procedure from SQL to a
variation of Hive queries and selects the best plan based on
a modified cost model. These works involve SQL-MapReduce
or SQL-HiveQL-MapReduce translation, using techniques like
query graph analysis, query rewriting, and optimization of the
DAG structure. Their approach focuses on the MapReduce
flow or higher layers and none of them considers data ma-
nipulation within one MapReduce task. All of them choose
to use Hive-friendly storage, like HDFS, by default. Neither
UPDATE nor DELETE operations are discussed.

B. Execution Environment Optimization

To improve the performance or features of Hive, many
HiveQL compatible systems have been developed, like Shark
[16] based on Spark [17], Cloudera Impala [18], and others.
Technologies for in-memory processing, more efficient data
reading and writing, and partial DAG execution are utilized

1https://issues.apache.org/jira/browse/HIVE-2206

to enhance the whole system or just particular kinds of
applications like recursive data mining and ad-hoc queries.

Besides, by designing and analyzing MapReduce cost mod-
els, a large body of research has been done to enable execution
level optimization of MapReduce. Starfish, as an example,
focuses on automatic MapReduce job parameter configuration
[19]. It makes use of a profiler to collect detailed statistics
from MapReduce executions and utilizes a what-if engine to
stimulate the execution and estimate the cost. An optimizer is
utilized to minimize the cost of finding a good configuration
in a search space with combinatorial explosion. The aforemen-
tioned Stubby also uses the what-if engine here to estimate cost
for a MapReduce workflow [14]. MRShare aims at task sharing
among queries that contain similar subtasks [20]. Optimal
grouping of relevant queries based on the MapReduce cost
model minimizes redundant processing cost and improves the
overall efficiency.

From the perspective of data manipulation, these works
are similar to those of query plan optimization. They optimize
MapReduce tasks and plans, either through intelligent config-
uration of environment settings or just by improving sharing
among MapReduce tasks. Data manipulation operations are out
of their scope.

C. I/O Optimization

Optimized data placement is a common way to reduce data
loading and reading cost. The RCFile splits a data file into a
set of row groups, each group places data in a column-wise
order [21]. With the help of the RCFile, a Hive application
can efficiently locate its inputs onto several data groups while
avoiding reading redundant columns of necessary rows. RCFile
and Hortonworks’ ORC (Optimized RCFile) are widely used
in the Hive environment [7]. Different from RCFile, LLama
divides data columns into groups, and provides another kind of
data format, CFile, to store them [22]. An index mechanism is
used for efficient data look up. It is shown that data loading and
join performance can be improved. Driven by the requirement
of Smart Grid data process, we have also proposed DGFIndex,
a new multiple range index technology [4], which significantly
improved the overall efficiency of multiple range query with
a fair low cost of space occupation.

Similar to RDBMS, creating indexes can also be of great
value for I/O performance improvement. For now, Hive itself
can support a compact index called CIndex [23]. CIndex can
enable multi-dimensional queries at the cost of a large disk
space for the index structure. Hadoop++ also provides an
index-structured file format to reduce the I/O cost during data
processing [24].

Data placement and index technologies try to minimize I/O
to improve the query performance, but they do not improve
update operation support. On the other hand, Hive indexes will
result in additional cost of reconstructing index structures for
applications with update operations implemented with INSERT
OVERWRITE statement.

VIII. CONCLUSION

In this paper, we have presented DualTable, a novel storage
model for Hive. DualTable stores data selectively in HDFS



or in HBase. While new records are always stored in HDFS,
updates are either directly executed on HDFS or stored as delta
records in HBase. The storage location is dynamically chosen
by a cost model. Our experiments with standard industry
benchmarks and real data and workloads from the China State
Grid show that DualTable outperforms Hive by orders of
magnitude in realistic settings.

In future work, we will evaluate other storage options for
the Attached Table, and compare the performance of DualTable
with that of Hive ACID once it is available. Furthermore,
we will investigate how the proposed storage model can be
incorporated in other big data analytic systems such as Impala.
Additionally, we will investigate multi-query optimization
in Hive, which we expect to yield significant performance
improvements in enterprise use cases such smart grid data
management.
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