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Abstract – We incorporate fault tolerance in designing reliable and scalable overlay networks to support topic-
based publish/subscribe communication. We propose a new family of optimization problems, named MinAvg-kTCO,
that captures the trade-offs among several key dimensions including fault tolerance, scalability, performance, and
message dissemination. Roughly speaking, the MinAvg-kTCO problem is: use the minimum number of edges to
create a k -topic-connected overlay (kTCO) for pub/sub systems, i.e., for each topic the sub-overlay induced by
nodes interested in the topic is k -connected.

We prove the NP-completeness of MinAvg-kTCO and show a lower-bound for the hardness of its approximation.
With regard to the MinAvg-2TCO problem, we present the first polynomial time algorithm, namely GM2 ,
with a guaranteed approximation factor relative to the optimum. We show experimentally that on representative
publish/subscribe workloads, the GM2 algorithm outputs 2TCO at the cost of an empirically insignificant increase
in the average node degree, which is around 1.65 times that of 1TCO produced by the algorithm with the best
known approximation ratio. Besides, GM2 reduces the topic diameters around 50% as compared to those in the
baseline 1TCO .

With regards to the MinAvg-kTCO problem, where k ≥ 2 , we propose a simple and efficient heuristic algorithm,
namely HararyPT, that aligns nodes across different sub-overlays. We show the practical scalability of HararyPT
for highly correlated pub/sub workloads in terms of the number of nodes, the number of topics, and the number
of subscriptions per node.



I. INTRODUCTION

Publish/Subscribe (pub/sub) systems constitute an attractive choice as the communication paradigm and messaging
substrate for building large-scale distributed systems. Many real-world applications are using pub/sub for message
dissemination, such as application integration across data centers [1], [2], file synchronization in distributed storage
systems [3], financial data dissemination [4], RSS feed aggregation, filtering, and distribution [5], business process
management [6], and algorithmic trading [7].

In the topic-based pub/sub model, a publisher associates its publication message with a specific topic and
subscribers register their interest in a subset of all topics. Topic-based pub/sub is adopted by many large-scale
systems and applications [1], [2], [3], [5].

A distributed topic-based pub/sub system is often organized as an application-level overlay of brokers (e.g.,
servers or simply referred to as nodes) connected in a federated or in a peer-to-peer manner [8]. The overlay
infrastructure directly impacts the pub/sub system’s performance and scalability, such as the message routing cost.
Constructing a high-quality broker overlay is a fundamental problem that has received attention both in industry [1],
[2] and academia [9], [10], [11], [12], [13], [14], [15].

Gregory Chockler et al. define a topic-connected overlay (TCO), as an overlay, where all nodes (i.e., pub/sub
brokers) interested in the same topic are organized in a connected dissemination sub-overlay [9]. A TCO ensures
that nodes not interested in a topic never need to contribute to disseminating information on that topic. Publication
routing atop TCOs saves bandwidth and computational resources otherwise wasted on forwarding messages of no
interest to the node. Topic-connectivity also results in more efficient routing protocols, a simpler matching engine
design, and smaller forwarding tables. From a security perspective, TCOs are desirable when messages are to be
shared across a network among a set of trusted users without leaving this set.

Unfortunately, topic-connectivity per se does not address critical reliability requirements for the pub/sub overlay.
In particular, there is no guarantee that topic-connectivity is preserved under even a single node crash. That is, all
the desirable properties about TCOs are fragile and easily break in a dynamic environment. The root cause for
this lies in the definition of TCO and TCO-related problems [9], [10], [11]. These definitions make an implicit
assumption that the pub/sub overlay is reliable and robust, i.e., nodes and links in the network are fault-free.

In order to address this shortcoming, we propose a problem of constructing a k -topic-connected overlay (kTCO):
topic-connectivity still holds as long as fewer than k nodes fail simultaneously on the same topic (see Def. 1 in §IV).
The extension from TCO to kTCO captures the overlay’s resilience to churn by introducing a safety factor, k . This
safety factor is important from an engineering perspective because pub/sub systems are dynamic in nature. Node
churn may occur due to administrative maintenance or inevitable failures, such as hardware faults, misconfigurations,
or software bugs [16]. In practice, the set of active machines in a data center shows non-negligible variations over
time [17]. Furthermore, the advent of new pub/sub applications, e.g., in sensor networks [18], [19] or mobile
networks [20], [21], makes it increasingly important and challenging to enable the overlay’s reliability. In these
scenarios, overlay nodes are not necessarily dedicated servers or brokers, and the pub/sub system is subjected to
growing dynamism and additional resource constraints.

Advocates for TCO-structured pub/sub overlays might argue that kTCO is not necessary. In principle, the TCO
can always be reconstructed in the presence of churn. However, this is impractical and wasteful since state-of-the-art
algorithms suffer from a high computational complexity [9], [10], [11], [14], [15], [22]. On the other hand, a few
pub/sub systems (e.g., [23], [24], [25], [26]) have explored the problem of dynamically maintaining the TCO .
Basically, these approaches constantly make incremental adjustments of the overlay in presence of churn. However,
the overlays they produced are not as optimal in terms of the node degree as the centralized algorithms for TCO
construction, as corroborated by experimental studies, e.g., in [25]. Besides, approaches for incremental overlay
maintenance can be applied to kTCO as well to produce even more reliable solutions.

Furthermore, kTCO can lead to better performance. First, kTCO indicates that k disjoint data paths exist from
end to end for each topic (see Merger’s Theorem [27]). Thus, we can harvest network intelligence in the routing
protocols on top of kTCO by steering the traffic among multiple alternate paths in a more optimized and secure
manner. Second, it is possible to reduce the diameter of the overlay, as we improve its connectivity [9]. With lower
diameter, message delays are likely to be diminished because fewer hops are needed for message delivery.
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Nevertheless, these merits of kTCO come with a price – additional links are required. Intuitively, a sparse overlay
is unlikely to be kTCO , while a dense overlay is sub-optimal with respect to node degree. However, it is also
imperative for a pub/sub overlay network to have low node degrees. This is because it costs a lot of resources to
maintain adjacent links for a high-degree node (i.e., monitor links and neighbors [9], [11]). For a typical pub/sub
system, each link would also have to accommodate a number of protocols, service components, message queues,
and so on. While overlay designs for different applications might be principally different, they all strive to maintain
bounded node degrees, e.g., DHTs [28], wireless networks [29], and survivable network designs [30].

In this paper, we formally study the fundamental trade-offs between attaining the kTCO property while preserving
low node degrees. Our main contributions are as follows:

• We propose the MinAvg-kTCO problem of devising kTCO with the minimum number of links (see Problem 1
in §IV). Formally, we prove the NP-completeness of the MinAvg-kTCO problem. We also show that MinAvg-kTCO
is difficult to approximate within a logarithmic ratio (§IV).

• We design two algorithms for the MinAvg-kTCO problem. First, with regards to the MinAvg-2TCO problem,
we present the first polynomial-time approximation algorithm, namely the GM2 algorithm in §V. We provide an
approximation ratio for GM2 , which almost meets the lower bound on the approximation ratio for the problem.
Our proof of GM2 ’s approximation ratio exhibits novelties in several respects, including the concept of ear
decomposition based on an edge sequence, the amortized analysis to measure the progress of the algorithm,
the estimate of edge contribution towards 2TCO , the charging argument against the optimal solution, and the
mathematical analysis using number theory (see the detailed proof in §VI). Second, with regards to the MinAvg-
kTCO problem, where k ≥ 2, we propose a simple and efficient heuristic algorithm, namely HararyPT, that aligns
nodes across different sub-overlays (see §VII).

• In §VIII, we validate both GM2 and HararyPT with comprehensive experiments under a variety of charac-
teristic pub/sub workloads of up to 1 000 nodes, 1 000 topics, and 100 subscriptions per node. GM2 requires an
empirically small amount of additional edges to obtain a 2TCO , whose average node degree is around 1.5 times
that of the 1TCO produced by the algorithm with the best known approximation ratio. Besides, GM2 improves
the topic diameters, which are around 0.5 of those in the baseline 1TCO . To achieve kTCO (k ≥ 2) for highly
correlated pub/sub workloads, we show the practical effectiveness and scalability of the HararyPT algorithm with
respect to the number of nodes, the number of topics, and the number of subscriptions per node.

II. RELATED WORK

A significant body of research has been considering the construction of an overlay topology underlying pub/sub
systems such that network traffic is minimized (e.g., [9], [10], [12], [13], [14], [11], [24], [15], [26]). Topic-
connectivity is a required property in [31], [23], [25], [26]. It is an implicit requirement in [32], [33], [13], [34],
[24], which all aim to reduce the number of intermediate overlay hops for a message to travel in the network.

Gregory Chockler et al. explored the MinAvg-TCO problem of constructing a TCO with a minimum number
of connections [9]. Following this direction, a number of problems were formulated in constructing TCO while
optimizing node degrees and other criteria [9], [10], [11], [14], [15], [22]. Unfortunately, this body of work did
not address the critical reliability requirements for a pub/sub overlay.

Some pub/sub systems (e.g., [23], [24], [26]) build and maintain the TCO in a decentralized manner. These
systems implement non-coordinated decentralized overlay construction protocols such that each node decides upon
its own neighbors. These protocols are generally efficient for handling dynamism, because they operate with only
local and partial knowledge. Since these approaches are TCO-based, our algorithms to build kTCO have the
potential to complement them, thus achieving more reliability, robustness, and adaptiveness in pub/sub overlays.

The classical graph theory about connectivity [27] serves as solid bedrock for us to tackle the reliability of
pub/sub overlays, including problem formulation, algorithm design, and performance analysis.

III. BACKGROUND

In this section, we present some notation and background information, essential for the problem formulation, the
algorithm design and analyses, and evaluations in this paper.
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Let I(V, T, Int) represent an input instance, where V is the set of nodes, T is the set of topics, and Int is the
interest function such that Int : V × T → {true, false}. Since the domain of the interest function is a Cartesian
product, we also refer to this function as an interest matrix. Given an interest function Int , we say that a node v
is interested in some topic t if and only if Int(v, t) = true. We also say that node v subscribes to topic t.

We denote a topic-based pub/sub overlay network (TPSO) as TPSO(V, T, Int , E). A TPSO(V, T, Int , E) can
be illustrated as an undirected graph G = (V,E) over the node set V with the edge set E ⊆ V × V . Given
TPSO(V, T, Int , E), the sub-overlay induced by t ∈ T is a subgraph G(t) = (V (t), E(t)) such that V (t) = {v ∈
V |Int(v, t)} and E(t) = {(v, w) ∈ E|v ∈ V (t) ∧ w ∈ V (t)}. A topic-connected component (TC-component) on
topic t ∈ T , is a maximal connected subgraph in G(t). A TPSO is called topic-connected if for each topic t ∈ T ,
G(t) has at most one TC-component. We denote the topic-connected overlay as TCO(V, T, Int , E), TCO for short.

IV. THE PARAMETERIZED MINAVG-kTCO PROBLEM AND ITS COMPLEXITY

The definition of a k -connected graph [27] can be directly applied to the sub-overlay induced by a topic t ∈ T .
We call a TCO(V, T, Int , E) k -connected for topic t ∈ T if G(t) = (V (t), E(t)) is k -connected, i.e., |V (t)| > k
and G(t)−X = (V (t)−X,E(t)\{e(v, w)|either v ∈ X or w ∈ X}) is connected for every X ⊆ V (t) with |X| < k .

We want to extend the definition of k -connectivity to a TPSO considering all topics in T . However, given a
parameter k , |V (t)| might be smaller than k for some topic t ∈ T ; in these cases, “k -connectivity” is not defined in
classic graph theory, but we need to adopt a convention for TPSO . Intuitively, for a fixed k , a k -topic-connected
overlay should have the property that the TPSO can still provide pub/sub service (for all topics) as long as fewer
than k nodes fail simultaneously on the same topic t ∈ T . If |V (t)| < k , the removal of (k − 1) nodes on t implies
that none subscribes to t any more, and thus the overlay no longer serves t. To ensure the pub/sub service continues
with topic t under other cases, we need to make sure G(t) has no separate set, i.e., G(t) is a complete graph. With
this convention, we formally give Def. 1 and Problem 1.

Definition 1. A TCO(V, T, Int , E) is k -topic-connected if for any t ∈ T , G(t) = (V (t), E(t)) is either (1) k -
connected or (2) a clique if |V (t)| ≤ k. We denote a k -topic-connected overlay by kTCO(V, T, Int , E) (or kTCO).

Problem 1. The MinAvg-kTCO(V, T, Int) problem parameterized by an integer k is defined as: Given a set of
nodes V , a set of topics T , and the interest function Int , construct a kTCO that has the least possible total number
of edges, i.e., the minimum average node degree.

For brevity, we often omit “parameterized by k” and just refer to the problem as MinAvg-kTCO. The MinAvg-
TCO problem is the base case of MinAvg-kTCO where k = 1. We have the Greedy Merge (GM) algorithm for
MinAvg-TCO [9]. The GM algorithm starts with TPSO(V, T, Int , E) where E = ∅ and proceeds by iteratively
adding edges to E until topic-connectivity is attained. At each iteration, GM greedily selects an edge e with the
highest GM-edge-contribution, which is defined as the number of TC-components reduced if an edge e is added
to the current overlay. The GM algorithm achieves a logarithmic approximation ratio, which is the lowest among
all known polynomial-time algorithms. We use GM as the baseline for developing, analyzing, and evaluating new
algorithms for the more generalized problem of MinAvg-kTCO.

We summarize the complexity analysis of the MinAvg-kTCO problem in Theorem 1. The proof is in Appx. A.

Theorem 1. For any given positive integer k , the MinAvg-kTCO problem parameterized by k is NP-complete and
can not be approximated in polynomial time within a factor of O(log |V |) unless P = NP .

V. THE GM2 ALGORITHM TO BUILD 2TCO

For the MinAvg-2TCO problem, we devise Greedy Merge for the 2TCO algorithm, GM2 for short. Although
GM2 is structurally similar to the GM and other existing centralized algorithms that build TCO [9], [10], [11],
GM2 uses a principally different progress measure (see Line 5 of Alg. 1), which we will elaborate upon §VI.

Given a TPSO(V, T, Int , E), the 2 -topic-connected component on topic t ∈ T , is a maximal 2 -connected
subgraph induced on topic t (i.e., it is not contained in any larger 2 -connected subgraph induced on t). We also
call it topic-biconnected component or topic-connected block, TC-block for short. Thus, each TC-block on t ∈ T is
either a maximal 2 -topic-connected subgraph, a bridge (including its endpoints), or an isolated node in G(t). Also,
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every such subgraph is a TC-block in G(t). Due to their maximality property, different TC-blocks on t ∈ T overlap
in at most one node in G(t). Hence, every edge e ∈ E(t) lies in a unique TC-block on t in G(t).

As specified in Alg. 1, GM2 starts with the overlay
TPSO(V, T, Int , E) where E = ∅, so that there are∣∣{v|Int(v, t)}∣∣ singleton TC-blocks for each topic t ∈ T .
The total number of TC-blocks at the start is

Bstart =
∑
t∈T

∣∣{v ∈ V |Int(v, t)}
∣∣ = O(|V ||T |) . (1)

The algorithm carefully adds an edge to E iteration by
iteration until TPSO(V, T, Int , E) contains at most one
TC-block for each t ∈ T , i.e., 2 -topic-connected, and the
total number of TC-blocks at the end is reduced to

Bend =
∣∣{t ∈ T |∃v ∈ V s.t. Int(v, t) = true}

∣∣ . (2)

Alg. 1 The GM2 algorithm for 2TCO
GM2 (V, T, Int)
Input: V, T, Int
Output: A 2 -topic-connected overlay 2TCO(V, T, Int , EGM2 )
1: EGM2 ← ∅
2: Epot ← V × V

3: while TPSO(V, T, Int , EGM2 ) is not 2 -topic-connected do
4: for all e = (v, w) ∈ Epot do
5: estimate(e, EGM2 )←

∣∣{t ∈ T |Int(v, t) ∧ Int(w, t)∧
no TC-block in G(t) contains both v and w}

∣∣
6: e← find e s.t. estimate(e,EGM2 ) is maximum among Epot

7: EGM2 ← EGM2 ∪ {e}
8: Epot ← Epot − {e}
9: return 2TCO(V, T, Int , EGM2 )

Lemma 1 summaries the correctness and running time of Alg. 1. We provide the proof in Appx. B.

Lemma 1. Alg. 1 outputs a 2TCO with time complexity O(|V |4|T |).

VI. APPROXIMATION RATIO OF GM2

While both, GM2 and GM, are greedy algorithms employing similar heuristics, the analysis of GM2 is much
more complex as compared to that of GM [9]. The crux lies in the measure of progress each algorithm employs –
namely, a quantity that strictly decreases (or increases) with every edge addition up to an absolute limit. The limit can
be used to bound the number of edges produced by the algorithm. For example, GM defines the progress measure
to construct 1TCO as the number of TC-components in the resulting overlay. The number of TC-components
decreases every time GM adds an edge, and the number of TC-components is an integer-valued function on the
current edge set. Based on the well-defined progress measure, the key is to establish a lower bound on the optimum
– since the optimum solution must cover a complete round of progress (i.e., attaining full topic-connectivity), it
needs at least a certain number of edges.

Unfortunately, the techniques for GM do not directly apply to the design of GM2 . We need to overcome three
major challenges: (1) find a meaningful measure of progress towards 2TCO (see §VI-A), (2) estimate the progress
as the algorithm proceeds (see §VI-B), and (3) compare the output to the unknown optimum (see §VI-C).

A. Progress measure towards the construction of 2TCO

Probably the most natural progress measure to construct 2TCO
would be the number of TC-blocks. However, the number of TC-blocks
does not always decrease when we add an edge at each iteration.
Suppose some algorithm adds edges one by one as illustrated in Fig. 1,
i.e., ei is added in the i-th iteration. The addition of edge e2, e3, or e4
does not decrease the number of TC-blocks – the number of TC-blocks
remains 4. Adding edge e5 leads to a reduction from 4 to 1 in the
number of TC-blocks, but not all of them should be accredited to e5.

e1 e1

e2

(0) #TCB = 5

e1 e1

e2
e3

e4

e1

e2
e3

e4e5

(3) #TCB = 4

(1) #TCB = 4 (2) #TCB = 4

e2
e3

(4) #TCB = 4 (5) #TCB = 1

Fig. 1: An edge sequence forms 2TCO on t.

The progress toward 2TCO is amortized over a sequence of edges added. We can still use the number of TC-
blocks as a rough progress measure, but the task of comparing to the (unknown) optimum is more difficult. We
will use a more subtle calculation (or estimation) of the progress measure that captures each edge contribution.

To present our progress measure we adopt the notation of sequences. Given an instance of the MinAvg-2TCO
problem I(V, T, Int), we look at an edge set E ⊆ V × V . An edge sequence, E, is an ordered list of edges in E,
denoted by E = ⟨e1, e2, ..., em⟩, where each edge ei(1 ≤ i ≤ m) is distinct. The length of an edge sequence E,
denoted by |E|, is the number of ordered edges in E. So |E| = |E|. An edge sequence F is a subsequence of E, if
F can be be derived from E by deleting some edges without changing the order of the remaining edges.
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Suppose E is the output edge set of some algorithm A that adds edges iteratively one by one and produces a
2TCO . The A-edge-sequence, E = ⟨e1, e2, ..., em⟩, indicates that A adds ei in the i-th iteration. Given an edge
e ∈ E, indE(e), is the sequence index of e in E, i.e., the iteration number of adding e in algorithm A.

Consider G(t) = (V (t), E(t)) induced on topic t ∈ T , E(t) is a subsequence of E that keeps the linear ordering
of edge additions of A. G(t) = (V (t), E(t)) is 2 -connected, which is equivalent to say that G(t) admits an ear
decomposition [27]. Below, we adopt some additional concepts from graph theory and provide formal definitions
for their use in our context, including the ear decomposition.

Definition 2. A path in a graph G(t) = (V (t), E(t)) is a nonempty set of edges Y ⊆ E(t) such that (1) edges
in Y can be linearly ordered as an edge sequence Y = ⟨(v0, v1), ..., (vn−1, vn)⟩ to connect a sequence of nodes
X = ⟨v0, ..., vn⟩, and (2) v0, ..., vn−1 are distinct and v1, ..., vn are distinct. We call v0 and vn the terminal nodes
of the path Y and the other nodes v1, ..., vn−1 (which may not exist) are internal nodes. A closed path Y with
v0 = vn is called a cycle, otherwise Y is noncyclic.

Definition 3. Given G(t) = (V (t), E(t)) and a nonempty subset of edges P (t) ⊆ E(t), let W (t) = {v ∈ V (t)|∃e ∈
P (t) s.t. e is incident to v}. An P (t)-ear in G(t), denoted by C(t), is a noncyclic path in G(t) such that the two
terminal nodes are in W (t) and the internal nodes are in

(
V (t)\W (t)

)
. The length of the ear C(t) is the number of

edges in the path, which we denote as |C(t)|. A trivial ear contains only one edge. We define the sequence index
of C(t) with regards to E as indE(C

(t)) = max{indE(e)|e ∈ C(t)}.

G(t) contains at least one cycle, otherwise it is not 2 -connected. A adds edges one by one according to E, so one
cycle would at first be formed in G(t). This cycle has the minimum sequence index with regards to E. Moreover,
given E, we can construct a corresponding ear decomposition for G(t).

Definition 4. The E-ear-decomposition on topic t ∈ T , denoted by D(t) =
[
C

(t)
1 , ..., C

(t)
z

]
, is a partition of

G(t) = (V (t), E(t)) into an ordered collection of edge-disjoint paths C
(t)
1 , ..., C

(t)
z , such that:

◃ S
(t)
1 = C

(t)
1 is the cycle in G(t) with the minimum sequence index with regards to E.

◃ For all 1 ≤ j ≤ z, let S(t)
j = C

(t)
1 ∪ ... ∪ C

(t)
j , then C

(t)
j is the S

(t)
j−1-ear with the shortest length among all

S
(t)
j−1-ears that have the minimum sequence index with regards to E. In other words, if C ′ is any other S

(t)
j−1-ear

in G(t), then either (1) indE(C
(t)
j ) < indE(C

′) or (2)
(
indE(C

(t)
j ) = indE(C

′) ∧ |C(t)
j | ≤ |C ′|

)
.

◃ S
(t)
z =

∪z
j=1C

(t)
j = E(t)

e1

e2
e3

e4e6

e5

C1
(t)

e1

e2
e3

e4e6

e5
e7

e9

e8

C2
(t)

C1
(t)

(b)(a)

e1

e2
e3

e4e6

e5
e7

e9

e8

e11

e10

e12

e13

C2
(t)

C3
(t)

C1
(t)

(c)

e1

e2
e3

e4e6

e5
e7

e9

e14

e8

e11

e10

e12

e13

C5
(t)

C4
(t)

C2
(t)

C3
(t)

C1
(t)

(d)

e10
C3
(t)

Fig. 2: Example of the E-ear-decomposition on topic t: (a) The initial cycle C
(t)
1 is formed after adding e6. (b) C(t)

2 is formed
after adding e9, and C

(t)
3 is formed after adding e10. Note that C(t)

3 is trivial because it contains only one edge e10. (c) The
addition of e13 forms a cycle {e11, e12, e13}, but this cycle does not make a S

(t)
3 -ear as required in Def. 4. (d) C(t)

4 and C
(t)
5

are formed after adding e14. The addition of edge e14 makes two S
(t)
3 -ears: {e8, e13, e14} and {e8, e11, e12, e14}. By Def. 4,

we set C(t)
4 by {e8, e13, e14} because it has the shortest length, and consequently C

(t)
5 is {e11, e12}.

Def. 4 serves as the basis to define the progress measure of algorithm A. We consider the number of TC-blocks
reduced by adding all edges in each ear. Given P (t) ⊆ E(t), we denote by B(V (t), P (t)) the number of TC-blocks
in the subgraph (V (t), P (t)) of G(t) = (V (t), E(t)). As illustrated in the table on the right hand side of Fig. 2,
the number of TC-blocks on topic t reduced by adding C

(t)
j is |C(t)

j | − 1, where 1 ≤ j ≤ z = 5. Formally, we

generalize these observations as Claim 1, where we define S
(t)
0 = C

(t)
0 = ∅. We prove it inductively in Appx. C.
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Claim 1. The ear C
(t)
j reduces the number of TC-blocks on topic t ∈ T in

(
V (t), S

(t)
j−1

)
by |C(t)

j | − 1, i.e.,

B
(
V (t), S

(t)
j−1

)
−B

(
V (t), S

(t)
j

)
= |C(t)

j | − 1 , ∀ C
(t)
j in D(t) =

[
C

(t)
1 , ..., C(t)

z

]
. (3)

As each ear C(t)
j is formed, edges in this ear account for the reduction in the number of TC-blocks. It is natural

to distribute the reduction over all edges in the newly formed ear: Each edge e ∈ C
(t)
j contributes |C(t)

j |−1

|C(t)
j |

to

the reduction of TC-blocks. The intuitive meaning of the ratio |C(t)
j |−1

|C(t)
j |

is the amortized contribution of e toward

2 -connectivity on topic t. Furthermore, each edge in E(t) belongs to only one ear in the E-ear-decomposition on
topic t ∈ T . So, given E, we can define the edge contribution of e ∈ C

(t)
j on topic t based on Def. 4 and Claim 1:

contrib(t)(e,E) =
|C(t)

j | − 1

|C(t)
j |

, where e ∈ C
(t)
j . (4)

The overall edge contribution is defined as contrib (e,E) =
∑

t
contrib(t)(e,E) . (5)

Furthermore, we define potential function Φ(i,E) as the progress measure for A after adding the i-th edge of E:

Φ(i,E) = Bstart −
i∑

j=1

contrib(ej ,E), 0 ≤ i ≤ m . (6)

Φ(0,E) = Bstart , Φ(i,E) monotonously decreases as i increases, and in the end Φ(m,E) = Bend based on Claim 1.

B. The estimate of edge contribution

With the edge contribution and potential function defined in Eq. (4), (5) and (6), we could accurately tell the
progress of algorithm A at each iteration – if we knew the output sequence of A. Unfortunately, we do not have
the output sequence until the algorithm returns, which makes the decision at each iteration of the algorithm more
difficult. To circumvent this dilemma, we first find the bounds for the contribution of an edge currently considered
for addition, with regard to all possible extensions of the edge sequence added up until the current iteration. Next,
we use these bounds as a bookkeeping device to estimate each edge contribution.

After the i-th iteration of A, we denote by Pi the set of edges added to the overlay and by Pi = ⟨e1, ..., ei⟩
the corresponding edge sequence. Given another edge sequence Q = ⟨e′1, ..., e′|Q|⟩ where e′j ∈ (V × V )\Pi, Pi ⋄Q
means P concatenates with Q, i.e., Pi ⋄Q = ⟨e1, ..., ei, e′1, ..., e′|Q|⟩. Let R = Pi ⋄Q, then R is an extension of Pi.
The extension set of Pi is

E (Pi) = {R|R is an extension of Pi and produces a 2TCO for I(V, T, Int)}. (7)

Note E ∈ E (Pi). Given some R ∈ E (Pi), we analyze the range of contrib(e,R). Looking at topic t ∈ T , let H(t)
i =(

V (t), P
(t)
i

)
be the current topic-induced subgraph on t produced by A after the i-th iteration, then contrib(t)(e,R)

is the edge contribution of e on topic t ∈ T with regards to R. Let us consider an edge e(v, w) ∈
(
V (t) × V (t)

)
\P (t)

i :
• If there exists some TC-block on t that contains both v and w, then e would form a trivial P (t)

i -ear of length
one. By Eq. (4), contrib(t)(e,R) = 0 (e.g., e10 in Fig. 2).

• If no TC-block on t contains both v and w (e.g., any edge except e10 in Fig. 2), Eq. (4) implies that
contrib(t)(e,R) > 0. By Def. 4, the length of the ear containing e in the R(t)-ear-decomposition is at least 2,
so contrib(t)(e,R) ≥ 1

2 . Besides, contrib(t)(e,R) has an obvious upper bound of 1.

Thus, contrib(t) (e(v, w),R) =

{
0, if some block in

(
V (t), P

(t)
i

)
contains both v and w

∈
[
1
2 , 1

)
, otherwise

,R ∈ E (Pi) . (8)

Claim 2 shows the contributions of an edge with regards to different sequences. The proof is in Appx. C.

Claim 2. Given Pi = ⟨e1, ..., ei⟩, ∀E,R ∈ E (Pi), contrib(ej ,E) ≤ contrib (ej ,R) ≤ 2contrib(ej ,E), 1 ≤ j ≤ i.
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We now instantiate A by GM2 . Given the current edge set Pi, Line 5 of Alg. 1 defines the estimate of e’s
contribution on topic t:

estimate(t)(e(v, w), Pi) =

{
0, if some block in

(
V (t), P

(t)
i

)
contains both v and w

1, otherwise
(9)

The overall edge estimate is defined as estimate(e, Pi) =
∑

t
estimate(t)(e, Pi) . (10)

Claim 3 gives us the bounds for an edge estimate in terms of the edge contribution. The proof is in Appx. C.

Claim 3. Given Pi and a corresponding Pi, ∀R ∈ E (Pi), contrib(e,R) ≤ estimate(e, Pi) ≤ 2contrib(e,R).

C. Comparison against the unknown optimum

We now complete our plan to compare the 2TCO produced by Alg. 1 to the optimal one.

Lemma 2. The approximation ratio of Alg. 1 is O(U + ln |V ||T |), where U = max{|V (t)|, t ∈ T}.

Proof: Given an instance I(V, T, Int), suppose E is the output edge set of Alg. 1 and E is the GM2 -edge-
sequence, where |E| = |E| = m. Let E∗ be the optimal solution where |E∗| = m∗.

Recall that Pi is the edge set added to the overlay after the i-th iteration, and Pi = ⟨e1, ..., ei⟩ is the corresponding
edge sequence. Let Qi = E∗−Pi and Qi be an edge sequence of Qi with an arbitrary order, i.e., Qi = ⟨e∗1, ..., e∗|Qi|⟩.
Let Ri = Pi ∪Qi where mi = |Ri|, and Pi ⋄Qi = ⟨e1, ..., ei, e∗1, ..., e∗|Qi|⟩ , which means Pi concatenates Qi.

Since E∗ ⊆ Ri, Ri would produce a 2TCO , by Eq. (7), Ri ∈ E (Pi) . (11)

Adding Qi immediately after Pi reduces the values of potential function from Φ(i,Ri) to Bend . Since |Qi| ≤ |E∗|,
there exists an edge e′ ∈ Qi such that

contrib(e′,Ri) ≥
Φ(i,Ri)− Φ(mi,Ri)

|E∗|
=

Φ(i,Ri)−Bend

m∗ . (12)

Line 7 of Alg. 1 specifies the edge selection rule: Always choosing the edge with the highest estimate. At the
(i+ 1)-th iteration, Alg. 1 picks ei+1 so that estimate(ei+1, Pi) ≥ estimate(e′, Pi) // by greediness

≥ contrib(e′,Ri) // by Claim 3

≥ Φ(i,Ri)−Bend

m∗ // by Eq. (12) (13)

According to Eq. (6), Φ(i,Ri)−2Φ(i,E) = −Bstart +
∑i

j=1(2contrib(ej ,E)−contrib(ej ,Ri)). With Claim 2 and
Eq. (11),

∑i
j=1(2contrib(ej ,E)− contrib(ej ,Ri)) ≥ 0. So, Φ(i,Ri) ≥ 2Φ(i,E)−Bstart . (14)

Further, Φ(i,E)− Φ(i+ 1,E) = contrib(ei+1,E) ≥ 1/2 · estimate(ei+1, Pi) // by Claim 3

≥ Φ(i,Ri)−Bend

2m∗ // by Eq. (13)

≥ 2Φ(i,E)− (Bstart +Bend )

2m∗ // by Eq. (14) (15)

By Derivation C.1 in Appx. C,
(
Φ(i+ 1,E)− B̃

)
≤ (1− 1/m∗)

(
Φ(i,E)− B̃

)
, where B̃ =

Bstart +Bend

2
(16)

Eq. (16) shows the progression of the potential function value within successive iterations in GM2 as compared
to the optimal solution. Based on Eq. (16), we derive the bound on the number of iterations of Alg. 1 (i.e., the
number of edges in E) relative to m∗. We take

(
Φ(i,E)− B̃

)
as a function of i, and it decreases as GM2 adds

an edge at each iteration. Initially, Φ(0,E)− B̃ = Bstart−Bend

2 > 0, and finally, Φ(m,E)− B̃ = −Bstart−Bend

2 < 0. So
at some iteration λ0, the function turns from positive to negative. We have a sequence of the function values as:⟨(

Φ(1,E)− B̃
)
, . . . ,

(
Φ(λ0,E)− B̃

)
> 0, denote the number of such elements by λ0.

,
(
Φ(λ0 + 1,E)− B̃

)
, . . . ,

(
Φ(m,E)− B̃

)
≤ 0, denote the number of such elements by λ1=m−λ0.

⟩
(17)

Further, by Derivation C.2 in Appx. C, λ0 ≤ m∗ ·O(lnBstart) , (18)
λ1 ≤ m∗ ·O(U + lnBstart), where U = max{|V (t)|, t ∈ T} . (19)

Therefore, m = λ0 + λ1 = m∗ ·O(U + lnBstart).
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VII. THE HARARYPT ALGORITHM TO BUILD kTCO

With regard to the MinAvg-kTCO problem, we design the Harary-Per-
Topic Algorithm (HararyPT) to build the kTCO , as specified in Alg. 2.

HararyPT stems from graph theory about vertex connectivity and Harary
graphs. Function buildHarary(k,V(t)) (Line 3 of Alg. 2) represents the
standard procedure to construct the k-connected Harary graph for a given
sequence of nodes V(t). HararyPT invokes buildHarary() for each topic
t ∈ T (Lines 2-3). Since the Harary graph Hk ,n is known to be k -connected
with the minimum number of edges ⌈kn/2⌉ [27], we can derive Lemma 3.

Alg. 2 Harary-Per-Topic for kTCO
HararyPT(I(V, T, Int), k)
Input: I(V, T, Int), k
Output: kTCO(V, T, Int , EHPT)

1: V ← get an arbitrary sequence for V
2: for all t ∈ T do
3: E(t) ← buildHarary(k,V(t))
4: EHPT ←

∪
t∈T E(t)

5: return kTCO(V, T, Int , EHPT)

Lemma 3. Alg. 2 produces a kTCO with time complexity O
(
k ·

∑
t∈T |V (t)|

)
= O(k |V ||T |).

The most straightforward approach is perhaps to build the sub-overlay (i.e., Harary graph) independently for
each topic. One serious drawback is that the probability of any two nodes sharing the edge in more than one sub-
overlay is small [26]. Thus, the output overlay has an unnecessarily high average node degree. We also evaluate
this naive approach in §VIII. In order to promote edge sharing across different sub-overlays, we first obtain a
node sequence for all the nodes in Line 1 of Alg. 2. The HararyPT algorithm adopts the same linear ordering
for all Harary constructions across all topics. By sharing the determined node sequence, these Harary graphs are
likely to converge a lot of edges, especially when the workloads are highly correlated. As a consequence, the
output kTCO tends to have a low node degree. Although we do not have an approximation ratio for the HararyPT
algorithm, we can assume that subscriptions are highly correlated in typical pub/sub workloads. More specifically,
the study of representative pub/sub workloads used in actual applications observes the “Pareto 80-20” rule: Most
nodes subscribe to a relatively small number of topics [23]. Besides, many pub/sub workloads are modelled by a
power law distribution in both topic popularity and subscription size per node [5], [35]. Our experimental findings
in §VIII and Appx. D further demonstrate that the HararyPT algorithm significantly reduces the number of edges
while offering a high degree of topic-connectivity for typical pub/sub workloads in practice.

VIII. EVALUATION

We implemented GM2 , HararyPT, and other auxiliary algorithms in Java. We use GM as a baseline, because it
produces a 1TCO with the lowest average node degree among all known polynomial-time algorithms [9]. We also
develop the Cycle-Per-Topic algorithm (CyclePT) that mimics the common practice of building a separate overlay
for each topic independently (usually a tree but we use a cycle that has the same average node degree and achieves
2 -topic-connectivity). By CyclePT, all nodes interested in the same topic form a cycle, and cycles for different
topics are merged into a single 2TCO . Note that CyclePT is fundamentally different from HararyPT, because
CyclePT does not exploit the correlations in the workload and often ends up with an overlay with unnecessarily
high node degrees. We evaluated the HararyPT algorithm with different parameters, i.e., k ∈ [2, 14]. We only plot
the representative results for k = 2, 4, 6, 8, 10, but we report additional results.

We mainly compare the average node degrees in the output overlays produced by different algorithms. For a
specific algorithm A, we denote by dA the average node degree produced by A. We denote by T (v) the topic set
which node v subscribes to, and we call |T (v)| the subscription size of node v.

We use the following value ranges as input: |V |∈[100, 1 000], |T |∈[100, 1 000], and |T (v)|∈[10, 100], where each
node has a fixed the subscription size. Each topic t ∈ T is associated with probability p(t),

∑
t∈T p(t)=1, and

each node v ∈ V subscribes to t with a probability p(t) until |T (v)| is reached. The value of p(t) is distributed
according to either an exponential, a Zipfian (with α=2.0), or a uniform distribution, which we call Expo, Zipf,
or Unif for short. According to [23], these distributions are representative of actual workloads used in industrial
pub/sub systems today. Expo is used by stock-market monitoring engines for the study of stock popularity in the
New York Stock Exchange [35], and Zipf faithfully describes the feed popularity distribution in RSS feeds [5].

A. The impact of the number of nodes

Fig. 3 depicts the comparison among GM2 , HararyPT, GM, and CyclePT with regards to the number of nodes
under different distributions. We set |T | = 200, |T (v)| = 30, and |V | ∈ [100, 1 000].
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Fig. 3: GM2 vs. HararyPT vs. GM vs. CyclePT wrt. |V |

We look at GM2 in Fig. 3. First, dGM2 and dGM are quite close under all conditions. More specifically, dGM2 is
smaller than 1.66 · dGM on average, across all three distributions. GM2 is capable of constructing a 2TCO with a
marginal increase in the average node degree as compared to 1TCO produced by GM. Second, dCyclePT is roughly
equal to twice the subscription size, which is about 5-times higher than dGM2 on average. Third, dCyclePT tends
to increase with the number of nodes, while both dGM2 and dGM decrease as the number of nodes scales up. The
decrease of dGM2 and dGM lies in the fact that increasing the number of nodes leads to higher chances for both
GM2 and GM to find neighbors with more interest overlap, thus reducing overall number of neighbors needed.
All these results demonstrate the scalability of GM2 with regards to the number of nodes.

We look at HararyPT in Fig. 3. First, GM2 outperforms HararyPT both theoretically and empirically for
constructing 2TCOs. However, HararyPT allows the overlay to have more reliability commitments over 2TCO
by setting k > 2 . Second, dHararyPT increases as we increase k under all three distributions, and the HararyPT
algorithm tends to output better average node degrees in more skewed distributions. Third, HararyPT significantly
reduces unnecessary redundancy as compared to CyclePT. With fewer edges than 2TCOs produced by CyclePT,
HararyPT can achieve 12TCO under Expo, 7TCO under Zipf, and 5TCO under Unif.

Please see other evaluation analysis for HararyPT in Appx. D. The rest of §VIII places more emphasis on GM2 .

B. The impact of the number of topics

Fig. 4 depicts how GM2 and HararyPT perform as compared to GM and CyclePT when the number of topics
varies under different topic popularities. We set |V | = 800, |T (v)| = 30, and |T | ∈ [100, 1 000].
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Fig. 4: GM2 vs. HararyPT vs. GM vs. CyclePT wrt. |T |

Referring to the GM2 algorithm in Fig. 4, it can be seen that the average node degrees of both GM2 and GM
increase with the number of topics. Note that increasing the number of topics leads to reduced correlation, i.e.,
the probability of having two nodes interested in the same topic drops as the number of topics increases, and with
reduced correlation the edge contribution at each iteration of GM2 (and GM) tends to be lower. This reduction
in the correlation is more pronounced for Unif as compared to skewed distributions, like Expo or Zipf. Yet, the
increase in dGM2 is slow paced. In particular, dGM2 is no more than 1.66 · dGM on average. Next, the gap between
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dCyclePT and dGM2 remains significant: dCyclePT − dGM2 ≥ 43.1 on average, across all experiment instances under
various distributions. Besides, GM2 exhibits more advantages over CyclePT for highly correlated workloads.

C. The impact of subscription size
Fig. 5 depicts the impact of the subscription size on the GM2 , HararyPT, GM, and CyclePT algorithms. We

fix |V | = 800, |T | = 200, and |T (v)| ∈ [10, 100].
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Fig. 5: GM2 vs. HararyPT vs. GM vs. CyclePT wrt. the subscription size

We focus on the GM2 algorithm in Fig. 5. First, under all three distributions, GM2 and GM produce quite close
overlays in terms of the average node degrees. As the subscription size increases, both dGM2 and dGM decrease,
and the difference (dGM2 − dGM) shrinks. This decrease occurs because the growth of subscription size causes
increased correlation across the nodes. Upon bigger correlation, an edge addition to the overlay has on average a
higher contribution toward 1TCO (or 2TCO) because the nodes share more comment interests. Therefore, a smaller
number of edges are needed until the overlay becomes topic-(bi)connected. Second, the average node degree of
CyclePT increases linearly with the subscription size, dCyclePT is roughly equal to twice the subscription size of
the workload. The above two facts render GM2 increasingly important when the subscription size scales up.

D. Topic diameter of the overlay

We also look at topic diameters in the output overlays. Given
2TCO(V, T, Int , E), the topic diameter for t ∈ T is diam(t) = diam(G(t)),
where diam(G(t)) is the maximum shortest distance between any two nodes
in G(t) =

(
V (t), E(t)

)
. We denote the maximum and average topic diameter

across all topics as Diam and diam , respectively. Fig. 6 shows that GM2
significantly outperforms GM in terms of both Diam and diam . Under Unif,
DiamGM2 is 0.40 · DiamGM, and diamGM2 is 0.50 · diamGM, on average.
Besides, the gap grows as the input instances scale up from 100 nodes to 1000:
as |V | = 1000, DiamGM−DiamGM2 = 17.5, and diamGM−diamGM2 = 10.0.
(Additional results under Expo and Zipf are available in Appx. D-C.)
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Fig. 6: Topic diameters under Unif

IX. CONCLUSION

We study a new family of optimization problems MinAvg-kTCO that constructs reliable overlay networks for
topic-based pub/sub. We present a polynomial-time overlay design algorithm, GM2 , which approximates MinAvg-
2TCO within a proven bound. We provide a novel proof for the approximation ratio of GM2, which is almost
tight since no logarithmic approximation polynomial-time algorithm can exist for the MinAvg-2TCO problem
unless P=NP. Furthermore, we design a heuristic algorithm for the MinAvg-kTCO problem, namely the HararyPT
algorithm, especially for highly correlated pub/sub workloads.

Our experimental results validate our formal analysis for the GM2 algorithm: The average node degree of the
2TCO produced by GM2 is about 1.65 times that of the 1TCO generated by the baseline algorithm, GM. We
also show the practical scalability of HararyPT for representative pub/sub workloads in terms of the number of
nodes, the number of topics, and the subscription size. In sum, our designed algorithms are capable of achieving
more reliable topic-connectivity by compromising the average node degrees insignificantly.
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APPENDIX A
COMPLEXITY OF THE PARAMETERIZED MINAVG-kTCO PROBLEM

Theorem A.1. MinAvg-2TCO is NP-complete.

Proof: First, MinAvg-2TCO is in NP. We consider the decision version of MinAvg-2TCO: Each instance of the
problem has I(V, T, Int) and a constant m0 We need to answer the question of whether there exists a 2TCO such
that the number of edges is no more than m0, i.e., ≤ m0. If we are given a candidate overlay TPSO(V, T, Int , E),
we can verify in polynomial time (1) whether this candidate is 2TCO by computing the blocks of each sub-graph
G(t) where t ∈ T [27], [36], and (2) whether |E| ≤ m0.

Second, we prove MinAvg-2TCO is NP-hard by a reduction from MinAvg-TCO to MinAvg-2TCO. We look
at the decision versions for both problems. Given an instance I(V, T, Int ,m) for the decision version of MinAvg-
TCO, we need to give a yes/no answer to the question of whether there exists TCO(V, T, Int , E) such that
|E| ≤ m. Without loss of generality, we can denote |V | = n and number all nodes as V = {v1, v2, ..., vn}. We
construct an instance I ′(V ′, T ′, Int ′,m′) for the decision version of MinAvg-2TCO, which asks whether there
exists 2TCO ′(V ′, T ′, Int ′, E′) such that |E′| ≤ m′.
The construction can be achieved in polynomial time
as follows (see Fig. 7):

• V ′ includes all nodes in V and adds a new node
v′, i.e., V ′ = V ∪ {v′} = {v1, v2, ..., vn, v′}.

• T ′ includes all topics in T and adds a topic t′i for
each node vi ∈ V , i.e., T ′ = T ∪ {t′1, t′2, ..., t′n}.

• Int ′(vi, t) = Int(vi, t), ∀t ∈ T ; Int ′(vi, t′i) = true,
Int ′(vi, t

′
j) = false if i ̸= j; Int ′(v′, t) = true, ∀t ∈ T ′.

• m′ = m+ n.
Fig. 7: The construction of a 2TCO instance from a 1TCO
instance: (a) 1TCO(V, T, Int); (b) 2TCO ′(V ′, T ′, Int ′).

Suppose there is some TCO(V, T, Int , E), for instance, I such that |E| ≤ m, then there is 2TCO ′(V ′, T ′, Int ′, E′),
for instance, I ′ such that |E′| ≤ m′ = m+ n. Consider the edge set E′ = E ∪ {(v′, v1), (v′, v2), ..., (v′, vn)|}, then
|E′| ≤ m+ n and G′(V ′, E′) satisfies 2 -topic-connectivity for I ′(V ′, T ′, Int ′), because 1) G′(V ′, E′) will remain
topic-connected when removing v′ from the graph since the remaining graph is identical to G(V,E); 2) G′(V ′, E′)
will remain topic-connected when removing any vi ∈ V because v′ connects to every other node.

On the other hand, if there is some 2TCO ′(V ′, T ′, Int , E′), for instance, I ′ such that |E′| ≤ m′, then there is
TCO(V, T, Int , E) such that |E| ≤ m = m′−n. In 2TCO ′, v′ has to connect to every other nodes to attain topic-
connectivity for the newly introduced topics {t′1, t′2, ..., t′n}, i.e., E′ contains all edges {(v′, v1), (v′, v2), ..., (v′, vn)}.
We construct E = E′\{(v′, v1), (v′, v2), ..., (v′, vn)}, then |E| ≤ m and G(V,E) satisfy topic-connectivity with
regards to I(V, T, Int), because G′(V ′, E′) remains topic-connected when removing v′ from the graph, which turns
out to be G(V,E).

The lower bound on the approximability of MinAvg-TCO was proven to be Ω(log |V |) unless P = NP [37].
Based on this result, we provide Theorem A.2 for the inapproximability of MinAvg-2TCO.

Theorem A.2. MinAvg-2TCO can not be approximated in polynomial time within a factor of O(log |V |) unless
P = NP .

Proof: We follow the same reduction and notation as presented in the proof of Theorem A.1. Denote mopt

as the minimum number of edges for the optimal solution of MinAvg-TCO(V, T, Int) and m′
opt as the minimum

number of edges for the optimal solution of MinAvg-2TCO(V, T, Int), then

mopt = m′
opt − n (20)

Suppose, by contradiction, that there is a polynomial algorithm which achieves an approximation ratio of O(log n)
for MinAvg-2TCO. Let the output be 2TCO ′(V ′, T ′, Int ′, E′) and |E′| = m′, then there exists a constant C s.t.

m′ ≤ m′
opt · C log n (21)
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With regards to the corresponding TCO(V, T, Int , E) where |E| = m, we have

m = m′ − n ≤ m′
opt · C log n− n

= (mopt + n) · C log n− n

= mopt · C log n− (n− C log n)

= mopt ·O(log n) (22)

So, TCO(V, T, Int , E) achieves an approximation ratio of O(log |V |), which contradicts Theorem 1 in [37].
We further generalize the results for MinAvg-kTCO by induction on k with the same proof techniques.

Theorem A.3. For any given positive integer k , the MinAvg-kTCO problem parameterized by k is NP-complete
and can not be approximated in polynomial time within a factor of O(log |V |) unless P = NP .

APPENDIX B
CORRECTNESS AND RUNNING TIME OF THE GM2 ALGORITHM

Lemma B.1. Alg. 1 outputs a 2TCO after at most |V |2 iterations of the while loop in Lines 3-8.

Proof: It follows directly from the pseudo code that Alg. 1 always outputs a 2TCO . At each iteration of the
while loop in Lines 3-8, one edge is added to the current overlay network. Hence, the algorithm terminates in
|EGM2 | iterations, which is bounded by |V |2.

Lemma B.2. The running time of Alg. 1 is O(|V |4|T |).

Proof: Consider the runtime cost of each iteration in the while loop in Lines 3-8. For each topic t ∈ T , a
Depth-First-Search-based algorithm can find all blocks in the current topic-induced sub-overlay with O(|V |2) [36].
Thus, it takes O(|V |2) time to compute the edge estimate on topic t for each potential edge. The time complexity
at each iteration is O(|V |2|T |) across all topics in T . According to Lemma B.1, the running time of Alg. 1 is
O(|V |4|T |).

APPENDIX C
CLAIMS AND BUILDING BLOCKS TO COMPLETE THE PROOF OF GM2 ’S APPROXIMATION RATIO

Claim C.1. The ear C
(t)
j reduces the number of TC-blocks on topic t ∈ T in

(
V (t), S

(t)
j−1

)
by |C(t)

j | − 1, i.e.,

B
(
V (t), S

(t)
j−1

)
−B

(
V (t), S

(t)
j

)
= |C(t)

j | − 1 , ∀ C
(t)
j in D(t) =

[
C

(t)
1 , ..., C(t)

z

]
.

Proof: Given an instance I(V, T, Int) and an edge sequence E that produces a 2TCO , we prove this claim
by induction on j, the index for the ears in the E-ear-decomposition D(t).

• Base case: j = 1. When the edge set is ∅, there are |V (t)| singleton TC-blocks in
(
V (t), ∅

)
, i.e.,

B
(
V (t), ∅

)
= |V (t)| . (23)

Consider the first cycle C
(t)
1 in the D(t): C

(t)
1 = S

(t)
1 has |C(t)

1 | edges to connect |C(t)
1 | nodes, and all |C(t)

1 |
nodes belong to one TC-block in

(
V (t), C

(t)
1

)
. Apart from the TC-block that is composed of |C(t)

1 | nodes, there

are
(
|V t| − |C(t)

1 |
)

singleton TC-blocks in
(
V (t), C

(t)
0

)
. Thus the total number of TC-blocks in

(
V (t), S

(t)
0

)
is

(|V t| − |C(t)
0 |+ 1), i.e.,

B
(
V (t), S

(t)
1

)
= |V t| − |C(t)

1 |+ 1 . (24)

Therefore, edges in S
(t)
1 belong to one TC-block in

(
V (t), S

(t)
1

)
, and

B
(
V (t), ∅

)
−B

(
V (t), S

(t)
1

)
= |C(t)

1 | − 1 . (25)
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• Inductive hypothesis: assume inductively that all edges in S
(t)
r belong to one TC-block in

(
V (t), S

(t)
r

)
, and

B
(
V (t), S

(t)
r−1

)
−B

(
V (t), S(t)

r

)
= |C(t)

r | − 1 , ∀ r ≤ j − 1 , where 1 < j ≤ z .

• Inductive step: Based on the inductive hypothesis, all edges in S
(t)
j−1 belong to one TC-block in

(
V (t), S

(t)
j−1

)
and we denote the node set in this block as

W
(t)
j−1 = {v ∈ V (t)|∃ e ∈ S

(t)
j−1 s.t. e is incident to v} .

So the number of TC-blocks in
(
V (t), S

(t)
j−1

)
is

B
(
V (t), S

(t)
j−1

)
= 1 +

(
|V (t)| − |W (t)

j−1|
)

. (26)

Adding ears preserves 2 -connectedness (see the Whitney Theorem in [27]), so all edges in S
(t)
j = S

(t)
j−1 ∪ C

(t)
j

belong to one TC-block in
(
V (t), S

(t)
j

)
, which we denote as

W
(t)
j = {v ∈ V (t)|∃ e ∈ S

(t)
j s.t. e is incident to v} .

Similar to Eq. (26), the number of TC-blocks in
(
V (t), S

(t)
j

)
is

B
(
V (t), S

(t)
j

)
= 1 +

(
|V (t)| − |W (t)

j |
)

. (27)

The ear C
(t)
j has |C(t)

j | edges to connect
(
|C(t)

j |+ 1
)

nodes: 2 terminal nodes are in W
(t)
j−1 and

(
|C(t)

j | − 1
)

are

in
(
V (t)\W (t)

j−1

)
. As compared to W

(t)
j−1, W (t)

j contains additional
(
|C(t)

j | − 1
)

nodes from the ear C(t)
j , so

|W (t)
j | − |W (t)

j−1| = |C(t)
j | − 1 (28)

Combining Eq. (26), (27) and (28), edges in S
(t)
j belong to one TC-block in

(
V (t), S

(t)
j

)
and

B
(
V (t), S

(t)
j−1

)
−B

(
V (t), S

(t)
j

)
= |W (t)

j | − |W (t)
j−1| = |C(t)

j | − 1 . (29)

Claim C.2. Given Pi = ⟨e1, ..., ei⟩, ∀E,R ∈ E (Pi), contrib(ej ,E) ≤ contrib (ej ,R) ≤ 2contrib(ej ,E), 1 ≤ j ≤ i.

Proof: Since E,R ∈ E (Pi), by Eq. (8), for any t ∈ T , we have either

contrib(t)(ej ,E) = contrib(t)(ej ,R) = 0, 1 ≤ j ≤ i

or

contrib(t)(ej ,E), contrib(t)(ej ,R) ∈ [12 , 1), 1 ≤ j ≤ i

As a result,

contrib(t)(ej ,E) ≤ contrib(t) (ej ,R) ≤ 2contrib(t)(ej ,E), 1 ≤ j ≤ i, ∀ t ∈ T (30)

Furthermore, ∑
t∈T

contrib(t)(ej ,E) ≤
∑
t∈T

contrib(t) (ej ,R) ≤ 2
∑
t∈T

contrib(t)(ej ,E), 1 ≤ j ≤ i (31)

By the definition in Eq. 5, we have

contrib(ej ,E) ≤ contrib (ej ,R) ≤ 2contrib(ej ,E), 1 ≤ j ≤ i (32)
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Claim C.3. Given Pi and its corresponding Pi, ∀R ∈ E (Pi), contrib(e,R) ≤ estimate(e, Pi) ≤ 2 · contrib(e,R).

Proof: Given R ∈ E (Pi), we first fix some t ∈ T . Based on the definition in Eq. (9), for any e ∈
(
V (t) × V (t)

)
,

we have either

contrib(t)(e,R) = estimate(t)(e, Pi) = 0

or

contrib(t)(ej ,R) ∈
[
1

2
, 1

)
and estimate(t)(e, Pi) = 1

As a result,

contrib(t)(e,R) ≤ estimate(t)(e, Pi) ≤ 2 · contrib(t)(e,R), ∀ t ∈ T , where R ∈ E (Pi) (33)

Furthermore,∑
t∈T

contrib(t)(e,R) ≤
∑
t∈T

estimate(t)(e, Pi) ≤ 2
∑
t∈T

contrib(t)(e,R), where R ∈ E (Pi) (34)

By the definition in equations (5) and (10), we have

contrib(e,R) ≤ estimate(e, Pi) ≤ 2 · contrib(e,R), ∀ e ∈
(
V (t) × V (t)

)
, where R ∈ E (Pi) (35)

Derivation C.1. The derivation from Eq. (15) to Eq. (16) in the proof of Lemma 2.

Proof:

Φ(i,E)− Φ(i+ 1,E) ≥ 2Φ(i,E)− (Bstart +Bend )

2m∗

⇒ Φ(i,E)− 1

m∗Φ(i,E) ≥ Φ(i+ 1,E)− 1

m∗ B̃ , where B̃ =
Bstart +Bend

2

⇒
(
1− 1

m∗

)
Φ(i,E)−

(
1− 1

m∗

)
B̃ ≥ Φ(i+ 1,E)− 1

m∗ B̃ −
(
1− 1

m∗

)
B̃

⇒
(
1− 1

m∗

)(
Φ(i,E)− B̃

)
≥ Φ(i+ 1,E)− B̃ (36)

Derivation C.2. The derivation for the bounds of λ0 and λ1 in the proof of Lemma 2, i.e., Eq. (18) and (19).

Proof: Eq. (36) shows the progression of the potential function value within successive iterations in GM2 as
compared to the optimal solution. Based on Eq. (36), we derive the bound on the number of iterations of Alg. 1
(i.e., the number of edges in E) relative to m∗.

Given E, we take
(
Φ(i,E)− B̃

)
as a function of i, and it decreases as GM2 adds an edge at each iteration.

Initially, Φ(0,E)− B̃ = Bstart−Bend

2 > 0, and finally, Φ(m,E)− B̃ = −Bstart−Bend

2 < 0. So at some iteration λ0, the
function turns from positive to negative. We have the values of the function as a sequence with regard to i:⟨(

Φ(1,E)− B̃
)
, . . . ,

(
Φ(λ0,E)− B̃

)
> 0, denote the number of such elements by λ0.

,
(
Φ(λ0 + 1,E)− B̃

)
, . . . ,

(
Φ(m,E)− B̃

)
≤ 0, denote the number of such elements by λ1=m−λ0.

⟩
(37)

The difference between successive elements in Eq. (37) is(
Φ(i,E)− B̃

)
−
(
Φ(i+ 1,E)− B̃

)
= Φ(i,E)− Φ(i+ 1,E) = contrib(ei+1,E) , 0 ≤ i < m. (38)
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We look at the edge contribution at each iteration. Based on Eq. (4) and (8), every edge contribution on t ∈ T
is a value in

{
1
2 ,

2
3 , ...,

U−1
U

}
, where U = max{|V (t)|, t ∈ T}. More specially,

contrib(t)(e,E) ∈
{
1

2
,
2

3
, ...,

U − 1

U

}
, where U = max{|V (t)|, t ∈ T} . (39)

The overall edge contribution contrib(e,E) is the sum of at most |T | values chosen from
{
1
2 ,

2
3 , ...,

U−1
U

}
. Thus,

contrib(e,E) ≥ 1

2
, ∀e in E , (40)

and ∣∣∣Φ(i,E)− B̃
∣∣∣ =

∣∣∣∣∣∣Bstart −
i∑

j=1

contrib(ej ,E)−
Bstart +Bend

2

∣∣∣∣∣∣
=

∣∣∣∣∣∣Bstart −Bend

2
−

i∑
j=1

contrib(ej ,E)

∣∣∣∣∣∣
=

{
or ≥ 1/LCM (1, 2, ..., U),
either 0,

∀ 1 ≤ i ≤ m (41)

where LCM (1, 2, ..., U) is the Least Common Multiple of 1, 2, ..., U .

We now return to the sequence in Eq. (37). Let l∗0 be the smallest sequence index in Eq. (37) where the function
value is smaller than 1/2, i.e.,

l∗0 = min

{
l0 |

(
Φ(l0,E)− B̃

)
≤

(
Φ(0,E)− B̃

)(
1− 1

m∗

)l0

≤ 1

2

}
. (42)

By Eq. (40), at the (l∗0 + 1)-th iteration,

contrib(el0+1,E) =
(
Φ(l∗0,E)− B̃

)
−
(
Φ(l∗0 + 1,E)− B̃

)
≥ 1/2 . (43)

So we have either 0 <
(
Φ(l∗0,E)− B̃

)
≤ 1/2 and

(
Φ(l∗0 + 1,E)− B̃

)
≤ 0 , (44)

or
(
Φ(l∗0,E)− B̃

)
≤ 0 (45)

In any case of Eq. (44) and (45),

λ0 ≤ l∗0, (46)

because
(
Φ(λ0,E)− B̃

)
> 0 and

(
Φ(λ0 + 1,E)− B̃

)
≤ 0 (see the sequence in Eq. (37)).

We look back at Eq. (42). According to Eq. (36), Φ(l0,E) − B̃ ≤
(
Φ(0,E)− B̃

) (
1− 1

m∗

)l0 always holds, so
by definition, l∗0 is the smallest l0 that satisfies(

Φ(0,E)− B̃
)(

1− 1

m∗

)l0

≤ 1

2

⇔ (Bstart −Bend )

(
1− 1

m∗

)l0

≤ 1

⇔ ln(Bstart −Bend ) + l0 · ln
(
1− 1

m∗

)
≤ 0

⇔ l0 · ln
(
1− 1

m∗

)
≤ − ln(Bstart −Bend )

⇔ l0 ≥
ln(Bstart −Bend )

− ln
(
1− 1

m∗

) // since ln

(
1− 1

m∗

)
< 0 (47)
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Further, by the definition of l∗0 in Eq. (42),

l∗0 =

⌈
ln(Bstart −Bend )

− ln
(
1− 1

m∗

) ⌉
(48)

By Taylor Expansion,

ln

(
1− 1

m∗

)
= − 1

m∗ − 1

2(m∗)2
− 1

3(m∗)3
− · · · , where m∗ > 0

⇒ ln

(
1− 1

m∗

)
< − 1

m∗ < 0

⇔ − ln

(
1− 1

m∗

)
>

1

m∗ > 0

⇔ 1

− ln
(
1− 1

m∗

) < m∗ (49)

Putting Eq. (49) into Eq. (47),

l∗0 ≤ ⌈m∗ · ln(Bstart −Bend )⌉ . (50)

Combining, Eq. (46) and (50),

λ0 ≤ l∗0 ≤ ⌈m∗ · ln(Bstart −Bend )⌉ ≤ ⌈m∗ · lnBstart⌉ = m∗ ·O(lnBstart) . (51)

Now we try to derive the bound for λ1. By Eq. (37), Φ(λ0+1,E)−B̃ ≤ 0. We just consider Φ(λ0+1,E)−B̃ < 0
is the first negative element in the sequence of Eq. (37) – for the case of Φ(λ0+1,E)−B̃ = 0, Φ(λ0+2,E)−B̃ < 0
would be the first negative element, and we could use the same technique to derive the bound for (λ1 − 1).

Since B̃ − Φ(λ0 + 1,E) > 0, λ1 does not exceed the smallest l1 that satisfies(
B̃ − Φ(λ0 + 1,E)

)(
1− 1

m∗

)l1

≥ Bstart −Bend

2
. (52)

Similar to the derivation for Eq. (51), we can obtain

λ1 ≤

⌈
m∗ · ln Bstart −Bend

2(B̃ − Φ(λ0 + 1,E))

⌉
. (53)

By Eq. (41),

B̃ − Φ(λ0 + 1,E) ≥ 1/LCM (1, 2, ..., U) . (54)

Recall that LCM (1, 2, ..., U) is the Least Common Multiple of 1, 2, ..., U .
The prime number theorem [38] implies that

LCM (1, 2, ..., U) = eU(1+O(1)) as U → ∞ . (55)

Putting Eq. (54) and (55) into (53), we have,

λ1 ≤ m∗ ·O(U + lnBstart) . (56)
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APPENDIX D
EVALUATION

As a complement to §VIII, we present additional experiments and analyses in this section.

A. The impact of the number of topics

Referring to the HararyPT algorithm in Fig. 4, first, the average node degree of HararyPT increases with the
number of topics due to the reduction in the correlation. This reduced correlation has an considerable effect under
Unif: To achieve 10TCO , dHararyPT is 54.22 when |T | = 100 and 222.84 when |T | = 1000 under Unif. As the
number of topics increases, the input instances (especially those under Unif) are deviating from our assumption
about the high correlation embedded in pub/sub workloads. As a result, HararyPT tends to lose its advantages of
aligning the nodes. Second, HararyPT always outputs a 2TCO with fewer edges than that produced by CyclePT.
Under Expo and Zipf, HararyPT can even achieve 6TCO with almost the same number of edges as required by
CyclePT.

B. The impact of subscription size

We focus on the HararyPT algorithm in Fig. 5. First, the average node degree increases as the subscription
size varies from 10 to 50 under Zipf (or from 10 to 20 under Unif), since each node has more topics to cover.
However, when the subscription size exceeds some threshold (e.g., around 50 under Zipf and around 20 under
Unif), the average node degrees start to decrease. We can explain this phenomenon by the trend that the correlation
becomes increasingly dominant as the subscription size increases. Second, HararyPT (for all k values) outperforms
CyclePT significantly. For example, when |T (v)| = 100, HararyPT can produce 12TCO with dHararyPT = 60.20
on average, across all distributions, whereas CyclePT outputs only 2TCO with dCyclePT = 177.23.

C. Topic diameters of the overlay
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Fig. 8: Diameters of GM2 vs. GM wrt. |V |

We also compare another important metric in the overlays produced by different algorithms, namely the topic
diameter. Overlay diameters impact many performance factors for efficient routing in pub/sub, e.g., message latency.
Given 2TCO(V, T, Int , E), the topic diameter for t ∈ T is diam(t) = diam(G(t)), where diam(G(t)) is the
maximum shortest distance between any two nodes in G(t) =

(
V (t), E(t)

)
. We denote the maximum and average

topic diameter across all topics as Diam and diam , respectively. Fig. 8 shows that GM2 significantly outperforms
GM in terms of both Diam and diam: DiamGM2 is 0.45 ·DiamGM, and diamGM2 is 0.51 · diamGM, on average
across all three distributions. Besides, the gap grows as the input instances scale up from 100 nodes to 1000:
as |V | = 1000, DiamGM − DiamGM2 is 16.75 under Expo, DiamGM − DiamGM2 is 10.5 under Zipf, and
DiamGM −DiamGM2 is 17.5 under Unif, respectively.
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