
Partition-Tolerant Distributed Publish/Subscribe Systems

Reza Sherafat Kazemzadeh and Hans-Arno Jacobsen

University of Toronto

{reza, jacobsen}@eecg.utoronto.ca

Abstract— In this paper, we develop reliable distributed pub-
lish/subscribe algorithms that can tolerate concurrent failure
of up to δ broker machines or communication links. In our
approach, δ is a configuration parameter which determines the
level of fault-tolerance of the system and reliability refers to
exactly-once and per-source, in-order delivery of publications
to clients with matching subscriptions. We propose protocols to
address three problems in presence of broker or link failures:
(i) subscription propagation; (ii) publication forwarding; and
(iii) broker recovery. Finally, we study the effectiveness of our
approach when the number of concurrent failures exceeds
δ. Through large-scale experimental evaluations with up to
500 brokers, we demonstrate that a system configured with
a modest value of δ = 3 is able to reliably deliver 97% of
publications in presence of failure of up to 17% of its brokers.

I. INTRODUCTION

Many of today’s large-scale distributed systems require

reliable many-to-many communication capabilities that go

well beyond the basic provisions of underlying network

protocols. Examples of such applications include news dis-

semination services, push-based RSS feed processing [1],

[2], job tracking and monitoring applications [3], financial

market data distribution [4] and realtime processing systems

for algorithmic trading [5]. Developers of these distributed

applications often face the challenging task to custom-build

scalable and reliable message dissemination platforms.

A reliable Publish/Subscribe (P/S) system is well posi-

tioned to address this need and relieve developers of much

of the hassle of reliable messaging at scale. The P/S model

provides a simple and powerful abstraction for information

sources to publish messages and information sinks to sub-

scribe to messages of interest. This is done in a loosely

coupled manner, via subscribing to pre-defined channels

(a.k.a. topic-based P/S) or by specifying filtering constraints

for published messages (a.k.a. content-based P/S).

Reliability in our context refers to exactly-once and per-

source, in-order delivery of publications to matching sub-

scribers. This establishes an abstract notion of ordered and

gap-less publication flow between each source and sink.

Note that due to the selectivity of subscriptions not all publi-

cations from a publisher should be delivered to a subscriber.

In other words, our notion of gap-less delivery must be

interpreted over the sequence of matching publications only.

More specifically, the order of published messages must be

preserved and for any consecutive publications from a source

that are delivered to a subscriber no intermediate matching

publication must be published by the source.

In this paper, we focus on fault-tolerance and reliability

aspects of content-based distributed P/S systems composed

of dedicated application-level message routers (called bro-

kers) that form an overlay network [6], [7], [8], [9]. To

tolerate failures in this architecture, Cugola et al. use overlay

reconfiguration techniques [10], Snoeren et al. exploit redun-

dant forwarding paths [11], Gryphon [12] takes advantage of

replication, and our earlier work uses brokers’ neighborhood

knowledge [13]. Among these systems, only the latter two

ensure reliable delivery (others aim for best-effort delivery).

In this paper, we extend our previous work on crash-

tolerant P/S systems [13] to the general case of node crash

and link failures. This extension is not trivial since a live but

partitioned broker is unaware of the dynamically inserted

subscriptions and may perform actions that are seemingly

correct but violate reliability. In what follows, we first use

a simple use case to motivate applicability of reliable P/S

systems and then highlight the challenges of preserving

reliability in the presence of link failures.

Motivating example: A Content Distribution Network

(CDN) can use reliable P/S dissemination to feed fresh

content to hundreds of its content servers. For this purpose,

content providers publish updated content into a P/S network

and each CDN server subscribes to the updates that it must

receive and serve to Internet users (Figure 1). This way

CDN servers act as subscribing clients of an internal P/S

system and receive a gap-less, ordered stream of content

updates. For example, subscription s1 ∶[provider=BBC,
location=USA], allows a server to receive updates about

United States from BBC News, or s2 ∶[provider=BBC,
type=video, extra=mostViewed] matches most-

viewed videos from BBC News. Published content comes

with content descriptors that must match the subscription

of the interested servers and payloads that contain the

published data. For instance, p1 ∶[provider=BBC,
location=USA, type=video, subj=oilSlick,

extra=mostViewed] describes a most-viewed

video file of the oil slick disaster in the Gulf of

Mexico, or p2 ∶[provider=BBC, location=USA,

type=HTML, extra=frontPage] describes the BBC

News front page. Now assume that p1 and p2 are recently

published publications (in-order) and that p2’s HTML

payload has a hyperlink to p1’s video file that must

be stored on the same server. The per-source, in-order

requirement in our reliability specification ensures that

servers receive these messages in-order and thus prevents
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Figure 1. Network partitions may lead to publication loss.

scenarios in which the HTML page has a dangling reference

to a non-existing video file on the server.

Challenge of dealing with link failures: Reliable pub-

lication forwarding in the broker overlay relies on proper

dissemination of client subscriptions. A link failure hinders

this process by creating network partitions and preventing

live brokers in these partitions from receiving dynamically

inserted subscriptions. A partitioned broker that lacks this

knowledge has an inconsistent routing state and may un-

knowingly discard matching publications and introduce gaps.

As we elaborate below, the decentralized nature of the

network and unavailability of global knowledge about the

status and reachability of all brokers makes detection and

prevention of such scenarios a challenging task.

To construct routing paths in the P/S overlay, subscriptions

are propagated throughout the network and each broker

stores each subscription and records the previous hop that

it was received from. This information is used to forward

future publications in the reverse direction towards the

matching subscribers. To illustrate the challenges of dealing

with link failures, we describe a sequence of link failures

and recoveries in the network of Figure 1 which lead to

violation of the gap-less delivery requirement: Consider

server S1 issues subscription s1 which fully propagates

throughout the network. However, just before server S2

issues its subscription s2, the link between B1 and B2

experiences a transient failure. As a result, Broker B1 does

not receive the new subscription. At this point, consider

publisher P to publish p1, p2 and p3 (in-order) which all

match s2 while only p1 and p3 match s1. In this situation,

Broker B1 who is only aware of s1 preserves p1 and p3 for

future transfer after the link is reconnected. B1, however,

filters out p2 which matches none of the subscriptions it has

received thus far. Later, once the link is re-established, B1

sends its outstanding messages including p1 and p3 towards

B2. Furthermore, since B2 has already received both s1
and s2, it forwards both publications towards B3 and B4.

Subsequently, p1 and p3 are delivered to both subscribers,

while server S2 never receives p2. As a result, the publication

flow delivered to S2 contains a gap.

Overview of the approach: We introduce δ as a config-

uration parameter that denotes the maximum number of

concurrent failures that the system must be able to tolerate.

In our approach, brokers form an initial tree-based applica-

tion layer overlay upon joining the system.1 The decision

1A registry service may assist brokers to identify the best broker to join.
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Figure 2. Routing layer (solid lines) and forwarding layer (dashed lines).

to adopt a tree overlay is mainly motivated by the in-order

publication delivery requirement. More specifically, allowing

publications from a source to traverse along multiple arbi-

trary forwarding paths towards a matching subscriber in a

general mesh makes it difficult to re-arrange the messages in

their original FIFO order at the receiver. This is especially

true in our content-based P/S system in which due to the

selectivity of subscriptions, successive publications from a

source that match a given subscription may have an arbitrary

number of non-matching publications in between.

A pure overlay tree has obvious disadvantages particularly

with respect to fault-resiliency. We address these concerns

by introducing the notion of neighborhoods and conceptually

separating the architecture into a static routing layer and a

dynamic forwarding layer (depicted in Figure 2). The routing

layer is entirely built upon the initial tree overlay referred

hereafter as the primary tree. This tree is constructed as

brokers join the system and establish links to an existing

broker in the system. Moreover, as part of the join operation,

a newcoming broker obtains knowledge of its neighbors

within distance ∆ = δ + 1 in the primary tree and notifies

them of its arrival.

Routing tables at each broker contain references that

construct end-to-end forwarding paths within the primary

tree structure. To tolerate failures (caused by node crashes

or link outages) we allow controlled reconfigurations within

the primary tree that affect how messages are forwarded.

These reconfigurations take place in the forwarding layer and

enables a broker to establish new links that bypass up to δ

of its unreachable neighbors by connecting to other brokers

within its ∆-neighborhood. As such, the notion of neigh-

borhoods provides a powerful tool that helps boost network

connectivity even in presence of multiple concurrent failures.

Figures 2(b) and 2(c) illustrate that the set of potential links

between brokers constructs a highly-connected mesh.

Preventing messages from falling into loops in this graph

and avoiding forwarding ambiguities requires careful consid-

eration. In our approach, brokers rely on the original primary

tree in order to make forwarding decisions after occurrence

of failures. More concretely, our algorithms constructs end-

to-end routing paths in accordance to the primary tree (rout-

ing layer). As failures occur and the network transforms,

brokers refer back to the original end-to-end routing paths

created over the primary tree to determine how to forward



the messages. This transition is smooth in the sense that no

publications are lost.

Finally, we need to ensure that link failures do not result

in routing inconsistencies in which incomplete subscription

routing information at brokers introduce gaps in publication

flows. Our approach to prevent such cases is based on

ensuring an important safety condition: “a publication is

delivered to a matching subscriber only if it is forwarded

by brokers that are all aware of the client’s subscription”.

Maintaining this safety condition when brokers and links

go through cycles of transient failures and subsequent re-

coveries is challenging. To overcome this challenge, our

contribution in this paper is three-fold: (i) our subscription

propagation algorithm delivers subscriptions to parts of the

network that are reachable from the issuing subscriber while

bypassing failed or unreachable brokers; (ii) our publication

forwarding algorithm uses this routing information in order

to forward matching publications and to detect and exclude

those publications that may compromise reliability; and (iii)

our recovery procedure ensures that when a failed broker

restarts or a broken link is re-established the routing tables

of endpoint brokers are in sync. We also experimentally

study scenarios in which the number of failures exceed the

guaranteed system limit of δ. Using real deployments with

up to 500 brokers, our results show that a modest value

of δ = 3 is able to ensure reliable delivery of 97% of

publications in presence of failure of 17% of brokers.

II. SYSTEM MODEL

We assume asynchronous communication links with un-

known delivery delays and brokers that may crash and

subsequently recover. In this model, a failed link can be

thought of as a link that becomes infinitely slow, thus

delaying some messages forever, i.e., lose messages. We

assume that each broker is equipped with a local failure

detector (FD) with eventually strong and eventually accu-

rate properties [14]. The FD can be implemented by a

ping mechanism and outputs the set of neighbors that are

currently unreachable from the broker. Theoretical results

have shown that for two processes A and B, crash of B

or failure of the communication link between A and B is

indistinguishable from A’s point of view. As a result, our

notion of unreachability inevitably encompasses both link

failure and crash of a neighbor. During the interval that A’s

FD does not indicate failure of B, we say that A maintains

an established session to B denoted by S(A,B). Finally, we

assume that A’s messages sent to B during each session are

delivered either with FIFO ordering or are never delivered.

In the latter case, A eventually detects unreachability of B.

The primary tree is constructed as brokers join the system

one at a time and create a new link to an already existing

broker in the system. These initial links are referred to as

primary links. A primary path, P(A,B), is a sequence of

pair-wise, adjacent brokers in the primary tree between A

and B. Routing paths are constructed along primary paths

and in absence of failures, publications are forwarded be-

tween brokers over primary links only. However, occurrence

of failures may necessitate live brokers to bypass failed

links or neighbors and reconnect the overlay using their

neighborhood knowledge. Figure 3 illustrates a simple case

in which after Broker B becomes unreachable, A establishes

a new communication session to C. We say that A’s session

to C becomes active when S(A,C) is established and A has

no other established session to another Broker B ∈ P(A,C).
We use ActA to denote the set of A’s active sessions.

Note that in general, active sessions are not symmetric and

as shown in Figure 3, activation of session S(A,C) does

not imply that Broker C also views S(C,A) as active.

failed

Active session

primary link

C

S(A,C)

BA
S(C,B)

Figure 3. Asymmetry of active
sessions between A and C.

Finally, the definition of active

sessions also implies that for

an arbitrary Broker X , Broker

A may only have one unique

active session on the primary

path P(A,X).

III. OVERLAY PARTITIONS

While the notion of unreachability described above con-

cerns the inability of two brokers to communicate over a

direct link, we define the notion of overlay partitions (or

simply partitions for brevity) to capture the inability to route

messages over paths comprised of multiple brokers. Con-

sider a primary path P(src, dst). When a broker on this path

detects its subsequent neighbor to be unreachable, it attempts

to reach out, establish and activate sessions to the brokers

further down the path. This creates sequences of unreachable

brokers along P(src, dst) that are bypassed by the newly

activated sessions. We say that these unreachable brokers

form a partition island between src and dst. For example,

Figure 4 illustrates that Brokers B3 and B4 are bypassed

on P(B0,B7) when Broker B2 activates S(B2,B5). We

refer to B3 and B4 that are located “on” the partition as

partition nodes denoted with pnodes, and refer to Broker

B2 whose FD module has detected the unreachability of the

neighboring brokers as the partition detector, pd. Finally,

we say that brokers in subtrees of the last broker on pnodes

are “beyond” the partition (e.g., Brokers B5, B6, B7).

It is possible that due to multiple failures, a partition

detector cannot reach out to any broker further down the

path. This is shown in Figure 4 where B2 on P(B0,C3) is

unaware of Broker C2 (since ∆ = 3) and thus cannot activate

any new sessions to bypass C1. In this case, we say that a

partition barrier is formed. More concretely, a partition on

P(src, dst) is a barrier if no active session bypasses the

partition’s pnodes and thus dst becomes unreachable from

src. Note that depending on the location of the pair of src

and dst, a given partition can be both an island for some

pairs while a barrier for others. For example in Figure 4, the



Partition lead node

Client

Source

s s

s

s s

ss

s

Island on P(B0,B7)

Island on P(B0,D3)

Barrier on P(B0, C3)

B0 B2 B3 B4 B5 B6 B7

C1 C2 C3

D1 D2 D3

B1

Figure 4. Primary paths (solid lines), active sessions (arrows) and network
partitions (highlighted areas) in network with ∆ = 3.

partition consisting of B3 alone is a barrier over primary path

P(B0,B3) while it is an island on P(B0,D3).
Regardless of its type, a partition is identified by

a unique tuple identifier, pid = (pd, i, pnodes), where

pd is the partition detector, i is a monotonically

increasing value assigned by pd and pnodes = ⟨Bj ,⋯⟩
is the primary path consisting of partition nodes.

For example, the partitions shown in Figure 4 are

{(B2,1, ⟨B3⟩), (B2,2, ⟨B3,B4⟩), (B2,3, ⟨B3,B4,C1⟩)}.
These partitions are created when B3’s active sessions to

Brokers B3, B4 and C1 fail, respectively.

Message types: There are four types of messages in our

system: (i) publications are data messages generated by pub-

lishers; (ii) subscriptions specify subscribers’ interests; (iii)

confirmation messages acknowledge delivery of publications

or subscriptions to subtrees in the primary tree; and (iv)

partition information messages carry pids of recently formed

or recovered partitions. The first three types may be tagged

by brokers with a set of partition ids, Tags = {pidi,⋯}, to

indicate that forwarding of these messages was prematurely

affected by the partitions indicated in Tags.

IV. OVERLAY LINK MANAGEMENT

Each Broker, X , monitors the status of its active sessions.

Whenever, an active session, say to Broker F , breaks down,

X tries to establish and activate new sessions to neighbors of

F . This process takes place in the background and in parallel

to the broker’s routing and forwarding tasks. Furthermore,

unreachability of F creates new partitions whose partition

detector is X . We require brokers to keep track of pids

whose partition detectors are within distance DPT (we

determine this value in Section VII) in a local set data

structure called the Partition Table (PT). For this purpose,

once a partition is formed, the partition detector adds the

new pid to its PT and notifies neighbors via its established

sessions using partition information messages. Receiving

brokers similarly update their PT and notify their neighbors.

V. SUBSCRIPTION PROPAGATION PROTOCOL

In this section, we elaborate on the subscription propa-

gation protocol that distributes clients’ subscriptions among

brokers. Subscribers connect to a broker of choice2 and issue

subscriptions that are propagated throughout the network.

2A load balancer [15] may consider different network parameters to
assign clients to brokers. This discussion is outside the scope of this paper.

A subscription s (issued by subscribers of source Broker

S), that arrives at Broker B contains the following infor-

mation: (i) a unique subscription id (sId) assigned by the

subscriber; (ii) subscription predicates, pred; (iii) a trailing

portion of the subscription propagation path, SPaths(B);
and (iv) a vector of sequence numbers, SeqVec. Broker

B uses pred to determine what publications match s;

SPaths(B) is a trailing sub-path of P(S,B) of length

DSEQ that is updated as s propagates through the network;

and finally, SeqVec is a vector of length DSEQ that is

used for message identification and ordering. We say that

a broker accepts a subscription when it is added to the

broker’s Subscription Routing Table (SRT). Only accepted

subscriptions are used for making publication forwarding

decisions. In our system, acceptance of a subscription does

not immediately follow its arrival at a broker and there are

several steps in between. We now describe these steps in

absence and in presence of failures, separately.

A. Subscription Propagation When There are no Failures

Figure 5 illustrates the subscription propagation algorithm

and we use line numbers throughout this description to refer

to it. A network broker, B, processes arrived subscriptions

in-order, and for each subscription, s, B first forwards

s over its active sessions to all brokers downstream of

B (in Lines 2–10) – downstream is the direction away

from source S. Since there are no failures B has active

sessions to all its immediate neighbors in the primary tree.

B inserts the id of these brokers into a set, Outs(B),
called the outgoing set and then proceeds to send s to

these brokers. Outs(B) represents the set of neighboring

brokers who must first confirm processing of s before B can

accept the subscription. For this purpose, B waits to receive

acknowledgements from these brokers. The processing of s

at downstream brokers takes place in a similar fashion until

s arrives at an edge broker with no downstream brokers. At

edge brokers, Outs is empty and s is accepted immediately

(Line 5). Furthermore, a special form of acknowledgement

called a confirmation message, cs, is issued upstream to

indicate that processing of s is complete in the subtree.

cs contains s’s identifier (sId) and in Lines 12-17, upon

receipt of cs, B removes the sender from Outs(B) and

checks whether the set became empty. If so, B accepts s

and proceeds to send cs upstream (Lines 14–17). Otherwise,

B waits for the remaining confirmations to arrive.

In its current form, the subscription propagation scheme

described thus far resembles a simple tree propagation

algorithm with acknowledgements. However, upon failure of

a communication link to a downstream node Y ∈ OUTs(B),
Broker B must decide whether to wait for a confirmation or

proceed to accept s without Y ’s confirmation. The former

choice may compromise liveness: if Y has crashed perma-

nently then the propagation process is blocked indefinitely.

On the other hand, the latter choice may compromise reli-



ability: if Y is live, the it remains unaware of s and may

discard publications that match s in the future.

In what follows, we describe how Broker B can make

progress in a way that does not compromise reliability. To

simplify presentation, we break down the description into

two parts that correspond to partition islands and barriers.

B. Subscription Propagation over Islands
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Figure 6. Case
of an island.

As mentioned earlier and shown in 6,

if B’s active session to neighboring Bro-

ker Y fails a partition, pid, is formed. Let

P(S,P ) be the primary path from S to an

arbitrary publisher P located beyond pid.

If B successfully activates a new session

on P(B,P ), then pid is by definition a

partition island on this path. In this situa-

tion, B continues the subscription propaga-

tion process by sending s to X (the first

reachable broker beyond the partition) thus

replacing Y with X in Outs (Lines 51–

55). Then B awaits to receive cs from X

in order to remove X from Outs. In this

case, if S(B,X) also fails in the meantime

before cs arrives, B replaces X in Outs with

any newly activated session(s) that bypass X . However, if

S(B,X) remains active long enough, X is able to complete

propagation of s and send cs to B. At this point, B removes

X from Outs and accepts s when Outs(B) = ∅.

Note that in the above approach, live brokers on the island

(pid.pnodes) may have neither received nor accepted s. In

this situation, however, if a Broker X beyond pid possesses

an active session to Broker Z on the partition, it can use this

link to propagate s in the partition island. For this purpose,

upon accepting s Broker X uses S(X,Z) to send a copy of

the subscription tagged with pid. We use the notation spid

to indicate pid ∈ s.Tags. A tagged subscription message

is only of interest to brokers located on the partitions that

it was tagged with (i.e., pid.pnodes) and thus is only sent

to these brokers. Upon receipt of a tagged subscription, the

subscription is immediately accepted and sent over active

sessions to other brokers on the island (Lines 41–45). For

example, in Figure 6 s is sent over S(X,Z). The purpose

of this upstream subscription propagation is to uphold our

safety condition (see Section I). More concretely, we would

like to ensure that if an active session from a broker beyond

the island to brokers on the island exists, then this session is

not used to send a matching publication to the island broker

prior to s being accepted by those brokers.

C. Subscription Propagation over Barriers

As shown in Figure 7, no bypassing session exists to

deliver s to brokers on or beyond a partition barrier. As

a result, all brokers downstream of the partition detec-

tor, B, do not receive and accept the subscription. In

1: procedure PROCESS ARRIVED SUB(s)
2: if CHECK SUB TAGS(s) then return

3: Outs(B) !Active sessions downstream of SPaths(B)
4: ▷ If an edge broker, accept and confirm immediately
5: if Outs(B) == ∅ then

6: ACCEPT AND CONFIRM(s)
7: return

8: ▷ Send s to downstream brokers
9: for all X ∈ Outs(B) do

10: SEND SUB TO(s.clone(),X)

11:

12: procedure ON SUB CONFIRMATION RECEIVE(cs)
13: s.Tags← s.Tags ∪ cs.T ags
14: Outs(B) ← Outs(B) − cs.sender
15: ▷ Accept s once all confirmations arrive
16: if Outs(B) == ∅ then
17: ACCEPT AND CONFIRM(s)

18:

19: procedure SEND SUB TO(s,X)
20: ▷ If X is beyond a known pid, tag s with pid
21: for all pid ∈ B’s PT do
22: if X is beyond pid.pnodes then
23: s.Tags ! s.Tags ∪ pid

24: ▷ Update s’s seq vector and send to X (see [16])
25: UPDATE SEQ V EC AND SENT TO(s,X)

26:

27: procedure ACCEPT AND CONFIRM(s)
28: ▷ Accept s; send s to reachable tagged parition nodes
29: Add s to SRT
30: for all pid ∈ s.tags do
31: if ∃X ∈ ActB ∧X ∈ pid.pnodes then Send s to X

32: ▷ send confirmations with new barrier ids
33: for all pid ∈ PT ∧B == pid.detector do
34: if pid.pnodes ∩ SPaths(B) == ∅ then
35: cs.T ags ! cs.T ags∪ pid

36: for all X ∈ s.senders do
37: Send cs
38:

39: procedure CHECK SUB TAGS(s)
40: returnV alue← false
41: for all pid ∈ s.Tags do
42: if B ∈ pid.pnodes then
43: Accept s
44: Send s over any active session to pid.pnodes
45: returnV alue← true
46: return returnV alue
47:

48: procedure ON SESSION ACTIVATED(X)
49: ▷ Executed upon activation of a session to X
50: for all unconfirmed s (in-order) do
51: if ∃Y ∈ Outs(B) ∧X ∈ P(B,Y ) then
52: Outs(B) ← Outs(B) − {Y } ∪ {X}

53: if ∃Y ∈ Outs(B) ∧ Y ∈ P(B,X) then
54: Outs(B) ! Outs(B) ∪ {X}
55: if ∄Z ∈ Outs(B) ∧ Y ∈ P(B,Z) ∧ S(B,Z) ∉

ActB then Outs(B) ! Outs(B) − {Y }

Figure 5. Subscription propagation algorithm executed at Broker B

this scenario, Broker B removes barrier’s pnodes from

Outs(B) and accepts s once other outstanding confirma-

tions arrive and Outs becomes empty. Furthermore, B

tags the confirmation message that it sends upstream with
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the pid of the barrier(s) whose node(s) have

not confirmed s. We use the notation cpids

to denote pid ∈ cs.T ags. When upstream

brokers accept s along with tags in cs and

issue their own confirmations, they propagate

the pids that were received in confirmation

messages from downstream brokers. Once all

confirmations arrive at source Broker S, it

accepts s and stores cs.T ags together with the

subscription message in its SRT. The purpose

of the tags in SRT is to indicate that those pub-

lishers whose source Brokers are on or beyond

the barrier have not accepted s and thus may

have unknowingly discarded other matching

publications. As a result, publications from

brokers on or beyond these barriers are not

safe to be delivered to the subscriber even

though they match the subscription predicates.

VI. PUBLICATION FORWARDING

The goal of the publication forwarding algorithm de-

scribed in this section is to deliver a publication, p, to a sub-

scriber with subscription s only if the following conditions

are satisfied: (i) p matches s.preds (matching condition);

and (ii) p’s source broker and all other brokers along its

propagation path had already accepted s prior to forwarding

p (safety condition). Our approach in this paper allows

brokers to evaluate this safety condition by examining the

locally available parition information (see Section IV).

We now elaborate on the forwarding algorithm using

Figure 8 and use line numbers to refer to it. Forwarding

comprises of five steps: queueing, barrier checking, match-

ing, routing, and cleanup. The queueing step (Lines 2–

10) first determines whether p has been received before

(duplicate detection is described in Section VII) and appends

p to a local FIFO message queue in order to preserve

the order of messages. This copy is kept until B ensures

successful delivery of p to all downstream subscribers whose

subscriptions are currently accepted by B. The barrier check-

ing step involves determining whether p’s source broker is

on or beyond any of the barriers currently known to B

(stored in its PT). If this is the case, B tags p with the

corresponding pid(s) (Lines 11–12). We use the notation

ppid to denote pid ∈ p.Tags. For subscriptions whose

propagation was previously blocked by the same partitions

(i.e., subscription confirmations were tagged with identical

pids), the publication tags indicate possibility of violation

of the safety condition. This is due to the fact that we

cannot assure that p has only been forwarded by brokers who

had accepted the corresponding subscriptions. As a result,

we choose to exclude p from the reliable publication flow

delivered to those subscribers. This exclusion takes place

at the final brokers that the corresponding subscriber are

connected to and not at interim brokers along the path.

After barrier checking, B computes Matchp(B) and

identifies subset of its accepted subscriptions that match p.

For each matching subscription s in this set, B determines

its active session on SPaths.src(B) and adds the corre-

sponding broker to p’s outgoing set, Outp(B) (Lines 13–

18). Similar to subscription propagation, p is sent to the

brokers in the outgoing set and Broker B awaits to receive

a confirmation, cp, indicating successful delivery of p to

matching subscribers in the corresponding subtree. For each

confirmation that arrives at B, the sender of the confirmation

is removed from Outp(B), and B checks whether the set

has become empty (Lines 19–23). If so, B discards p from

its message queue (cleanup step) and sends a confirmation to

the broker(s) where copies of p had come from (Lines 25–

27). In the event of a failure, B activates new sessions to

bypass its unreachable neighbor in a similar way to subscrip-

tion propagation. The only difference is that brokers with

local matching subscribers are not removed from Outp(B)
(Lines 42–48). This is crucial to prevent publication loss.

If p arrives at a broker with a local matching subscription,

then it must first be determined whether delivery of p is safe

(note that the subscription must have already been accepted

at the source broker). For this purpose, p.Tags is examined

against the pids that were received in cs.T ags. If p and cs
have no pid tags in common, then p has crossed no barriers

along its path and can be safely delivered to the matching

subscribers (Lines 32–38). Otherwise, if there is an identical

pid in both sets, then p has been published by a source

broker, P , located on or beyond a barrier. Since P is likely

not to have accepted s prior to sending p, delivery of p to the

client is not safe and may lead to gaps (see Section I for case

scenario where delivery of publication violates reliability).

VII. DUPLICATE DETECTION

To ensure exactly-once delivery, brokers must identify and

elimite duplicate messages. To illustrate this need, consider

a simple case in which brokers A, B and C form a chain in

the primary tree and publication p is sent first from A to C

via B. If session S(A,B) fails before B sends cp to A, then

A tries to re-send p directly to C over its newly activated

session S(A,C). Since C may have already received p from

B, retransmission of p leads to duplicate messages at C.

There are a number of possible approaches for dupli-

cate detection. Since links are FIFO, a simple scheme can

use a standard source-assigned message sequence numbers

and require brokers to keep track of the highest sequence

assigned by each source. As an alternative, we developed

a new duplicate detection scheme that relies on message

sequence numbers assigned by nearby brokers only. This

reduces the amount of state maintained at each broker and

relies on an important property that we define below:

Legitimate propagations: Propagation of message m from

source S, to a destination D, is legitimate if in all primary

sub-paths of P(S,D) of length 2δ+1, m bypasses no more



1: procedure ON PUB RECEIVE(p)
2: if Is Duplicate(p) then
3: p′ ← Queue.F ind(p)
4: if p′ == null then
5: ▷ Processing of previously received p′ has been

completed. send confirmation to the sender.
6: Send cp to X; return
7: else
8: p′.senders← p′.senders ∪ p.sender

9: else
10: Queue.append(p)

11: for all pid ∈ PT s.t. p.source on/beyond pid.pnodes do
12: Tag p with pid

13: Matchp(B) ← match p against accepted subs in SRT
14: CHECK LOCAL SUBS(P )
15: for all s ∈Matchp(B) do
16: if ∃S(B,X) ∈ ActA and X ∈ SPaths(B) then
17: Outp(B) ← Outp(B) ∪X
18: SEND PUB(p.clone(),X)

19: procedure ON PUB CONFIRMATION RECEIVE(cp)
20: p ← Queue.F ind(cp)
21: Outp(B) ← Outp(B) − cp.sender
22: if Outp(B) == ∅ then
23: CLEANUP AND CONFIRM PUB(P )

24: procedure CLEANUP AND CONFIRM PUB(p)
25: Queue.remove(p)
26: for all X ∈ p.senders do
27: Send cp to X

28: procedure SEND PUB(p,X)
29: ▷ Update seq vector before sending (see [16] for details)
30: UPDATE SEQ V EC AND SENT TO(p,X)
31: Send p to X

32: procedure CHECK LOCAL SUBS(p)
33: for all s ∈Matchp(B) do
34: if s.source == B then
35: if cs.T ags∩ p.Tags == ∅ then
36: Deliver p to local subscriber(s)
37: if Delivery to local subscribes successful then
38: Matchp(B) ! Matchp(B) − {B}

39: procedure ON SESSION ACTIVATED(X)
40: ▷ Upon activation of a session to X and after recovery
41: for all unconfirmed p in Queue do
42: for all Y ∈ Outp(B) ∧X ∈ P(B,Y ) do
43: Outp(B) ← Outp(B) ∪ {X} − {Y }

44: for all Y ∈ Outp(B) ∧ Y ∈ P(B,X) do
45: if ∃Z ∈Matchp(B) ∧X ∈ P(Y,Z) then
46: Outp(B) ← Outp(B) ∪ {X}

47: if ∀Z ∈ Matchp(B) s.t. Y ∈ P(B,Z) ∧
∃S(B,W ) ∈ ActB s.t. Y ∈ P(B,W ) then

48: Outp(B) ← Outp(B) − {Y }

Figure 8. Publication forwarding algorithm executed at Broker B

than δ brokers. This definition has two important properties:

First, m can still bypass δ failed or unreachable brokers

and thus the system remains δ-fault-tolerant; and second,

m’s legitimate propagation ensures that m is forwarded by

a majority of brokers along the primary path between S and

D. Intuitively, our duplicate detection algorithm (described

in detail in the extended version of the paper [16]) exploits

the latter property in order to ensure that propagation path of

a first copy of m that arrives at destination Broker D and that

of its duplicate, m′, intersect over every sub-path of length

2δ + 1 (i.e., m can at most bypass δ brokers and m′ can

bypass a different set of δ brokers, thus leaving one broker

in common). As a result, a variation of the sender-assigned

detection scheme can be developed that requires brokers to

keep track of the highest sequence numbers assigned only

by their neighbors within distance DSEQ = 2δ + 1.

VIII. RECOVERY PROCEDURE

Recovery is the process of delivering missing subscrip-

tions to brokers on or beyond a partition and has two

forms: Full recovery involves a broker that has previously

experienced a transient crash failure and as a result has lost

its entire SRT; and partial recovery involves a recovering

broker that has merely became temporarily unreachable from

other neighboring broker(s). In the latter case, the broker’s

SRT is likely to be only partially out of sync. In what follows

we elaborate on both types of recovery.

A. Partial Recovery

Partial recovery is initiated upon activation of a new

session. More specifically, once Broker S activates S(S,R)
to Broker R, a synchronization process is triggered during

which S transfers a subset of subscriptions in its SRT that are

not accepted by R. In this process, S is called the sync-point

and R is referred to as the recovering broker. Note that since

session activation is not necessarily symmetric, the recovery

procedure may take place only in one direction.

Partial recovery has five steps: (i) S notifies R that its

session to R is now active; (ii) R replies to S by sending

a summary of the subscriptions it has already accepted;

(iii) S uses R’s summary to identify and transfer those

subscriptions that it has accepted but are missing at R; (iv)

R receives the subscriptions from S and accepts them after

propagating them to its downstream network; (v) partition

information is updated within distance DPT of S.

We now elaborate on these steps: Step (i) is obvious.

In step (ii), Broker R summarizes its previously accepted

subscriptions by constructing a set of subscription identifiers

({sId}), which are currently present in R’s SRT. In step (iii),

this set is transferred to S which examines its own accepted

subscriptions and identifies the subset that are currently

missing at R’s SRT. The subscriptions corresponding to

these identifiers are then transferred from S to R. In step (iv),

R processes each such received subscription si as follows

(assume si originated by source Broker Si):

● For each of R’s active sessions, to a downstream

Broker Xj (i.e., R ∈ P(Si,Xj)), si is sent to Xj

which propagates the subscription in the same way as

described in Section V. Furthermore, R waits to receive

confirmation cjsi from Xj ;

● Confirmation message cjsi that arrives at R may have

been tagged by some pids that correspond to new barri-

ers downstream of R. Once all confirmations arrive, R

first accepts si with tags T ′ = ⋃(csi .T ags) and then:



Parameter Value Description

δ - Configuration parameter

∆ δ + 1 Knowledge of brokers neighborhood

DPT 2δ Partition info msgs propagation distance

DSEQ 3δ + 1 Size of sequence vectors (details in [16])

Table I
SYSTEM PARAMETERS

1) R sends cT
′

si
to S; and S compares T ′ with the

original set of tags, T , associated with si in its SRT.

S replaces pidk ∈ T such that R ∈ pidk.pnodes and

adds pids ∈ T ′. Furthermore, S issues a special pub-

lication message, called a partition recovery notifier,

prec, that contains both {pidk} and T ′. Publication

prec has a special matching semantic and matches all

subscriptions whose confirmation were tagged with

pidk. As a result, the publication recovery notifier

is forwarded in the network and once it arrives at a

subscription source brokers, Si, the broker replaces

pidk stored in its SRT with those in T ′.

2) R sends sT
′

i over any active session towards broker

Y on P(R,S) (similar to upstream subscription

propagation described in Section V-B). When Y

receives sT
′

i , it is processed as if it had been received

as part of a recovery procedure where R acts as a

sync-point and Y is a recovering broker.

Finally, in step (v) S removes pidk from its PT, and notifies

neighbors within distance DPT about recovery of pidk so

that they also remove pidk from their PTs. After these

updates take place, the state of the network along the

forwarding paths that pass through the recovered partition re-

turns back to normal. In other words, brokers within distance

DPT of pid.pd have removed pid from their PTs and do not

tag future publications. Furthermore, the subscription source

brokers have also removed pid from their SRTs and thus will

not suppress delivery of future matching publications.

B. Full Recovery

A crashed broker, R, that restarts must go through full

recovery. We require a restarted broker to be able to restore

its ∆-neighborhood from stable storage or by querying a

network management service aware of this information. The

broker then proceeds to activate sessions to its immediate

neighbors, Ni, in the primary tree. If successful, activation

of each such link causes Ni to also activate a session to R

and initiate a partial recovery to R, i.e., Ni acts as a sync-

point. Once all partial recoveries over all active sessions of

Broker R end, the recovery is complete.

Theorem 1. The P/S algorithms presented uphold the reli-

able delivery specification.

The proof of Theorem 1 can be found in [16].

Determining DPT : To determine the value of DPT we

use the legitimacy property. Remember that the role of

brokers within distance DPT of a partition detector is to
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Figure 9. Network connectivity after failures for a network of size 1000

and primary tree fanout of 3 (left) and 7 (right).

tag publications that arrive from brokers on the partition

(pid.pnodes) with pid. If s is a subscription accepted at

source Broker S with confirmation tag cpids then consider

the last 2δ + 1 brokers on P(S, pid.detector). Since s was

propagated legitimately, then at least δ + 1 of these brokers

have accepted s with tags that include pid. Since forwarding

of any matching publication p must also be legitimate (in the

reverse direction of subscription propagation), we conclude

that p passes through at least one broker that has previously

accepted s tagged with pid. This implies that DPT = 2δ is a

sufficiently large value (note that the partition detector is the

(2δ + 1)-th broker). In other words, if every broker within

distance 2δ of a partition detector stores the partition id in its

PT, and tags publications that arrive from partition brokers

accordingly, then no untagged copy of p can arrive at S and

thus p is safely excluded from the reliable publication flow

delivered to the subscriber. Table I summarizes all system

parameters and their values.

IX. EVALUATION

A. Network connectivity after failures

Occurrence of more than δ failures at adjacent neighbors

can result in disconnection of brokers downstream from each

end of the failed chain. While larger values for δ decreases

the likelihood of such disconnections, what we seek to study

here is a comparative analysis of the expected number of

disconnections resulting after concurrent failure of more

than δ brokers. We used a graph simulator to construct the

overlay network and inject failures at random nodes. We

then counted the number for chains of δ + 1 brokers that

were formed. Figure 9 illustrates the results. Each data point

is the average of 100 simulation runs in which a designated

number of brokers shown on the x-axis have been randomly

chosen to fail. The y-axis shows the percentage of end-to-end

brokers that are disconnected in a network of 1000 brokers

with primary tree fanout of 3 (left graph) and 7 (right graph).

In both cases, increasing δ improves network connectivity

as it reduces the possibility of occurrence of δ + 1 failures

in a chain. Furthermore, for a fanout of 3 there is a higher

number of disconnections compared to when fanout is 7.

This is due to the fact that a large number of brokers in

the network are edge brokers which have no downstream

brokers. As a result, failure of these edge brokers has no

adverse impact on connectivity of other brokers.
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Figure 10. Publication delivery during a 120s measurement interval in a
500 broker network with different number of failures.

B. Impact of failures on publication delivery.

To investigate how increased network connectivity im-

proves end-to-end publication delivery in presence of fail-

ures, we carried out experiments using our implementation

of the fault-tolerant publication forwarding algorithm. We

deployed a large network of 500 brokers on the SciNet clus-

ter [17] such that each broker is assigned a dedicated CPU

core (Intel Xeon at 2.53 GHz) and has access to 800 MB

RAM. We chose publication and subscription workloads

with 100% matching distribution in order to analyze ene-to-

end delivery between all brokers. Figure 10 illustrates the

number of publications delivered over 120s measurement

interval (y-axis) after the specified number of brokers have

failed (x-axis). It can be seen that the total number of

deliveries for δ = 3 is about 3% lower than the expected

deliveries had there been no disconnections. Furthermore,

lowering δ from 3 to 1 lowers publication delivery by steps

of about 4%. Finally, the system with δ = 0 suffers from vast

publication loss due to widespread disconnections. These

results demonstrate that a modest value of δ = 2 or 3 provides

statistically acceptable fault-tolerance against a large number

of concurrrent failures.

C. Size of brokers’ ∆-neighborhoods

Networks configured with larger values of δ require bro-

kers to maintain larger amounts of state. Figure 11 shows this

trend by illustrating the distribution of the size of brokers’

∆-neighborhoods in a network of 1000 brokers. In the left

diagram that corresponds to a network with fanout of 3, all

brokers’ neighborhoods contain fewer than 100 brokers. On

the other hand, the right diagram shows that when δ = 3 and

fanout is 7, the size of ∆-neighborhoods grow as large as

1000. This suggests that a smaller δ may be more feasible
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for networks with a high fanout primary tree.

D. Number of Active Sessions

An important factor affecting brokers performance is the

number of active communication sessions established at each

point in time. This number generally increases as more

neighboring brokers fail and need to be bypassed. To analyze

this trend we performed simulations with networks of 1000

brokers. Figure 12 illustrates the distribution of the number

of brokers’ active sessions after occurrence of 16 and 60

failures when δ is set to 3. The left and right diagrams

corresponds to cases where the brokers fanout in the primary

tree is 3 and 7, respectively. It can be seen that the number of

active sessions remains very low for the majority of brokers.

X. RELATED WORK

In this section, we discuss the related work. IP multicast

provides a dissemination mechanism that is closely related

to P/S systems. The basic multicast protocols, however, only

provide best-effort QoS and lack reliability. In the area of

reliable musticast protocols, OTERS [18] proposes subcast-

ing to improve reliability via retransmissions. Its network

management relies on multicast route backtracking which is

closely related to our notion of brokers’ ∆-neighborhoods.

However, being built upon IP multicast, OTERS is not

immediately applicable to a content-based P/S paradigm

which supports selective content-based publication delivery.

Opyrchal et al. [19] propose to overcome this challenge by

first mapping publications into multicast groups. Dissemina-

tion in the network uses reliable group communication, and

the subscribers’ source brokers apply a final filtering stage

based on the content-based matching criteria. While such

group communication-based approaches provide stronger

reliability and ordering guarantees than our approach, they

incur substantially more overhead. We believe that our

reliability specification provides a good balance for the needs

of a wide-range of distributed applications while keeping the

communication substrate as light-weight as possible.

Overlay-based routing techniques represent another body

of work that can be applied to build fault-resilient P/S

systems. In this area, Resilient Overlay Network (RON) [20]

is an architecture that improves the network resiliency to

Internet path outages via deploying overlay nodes at various

locations throughout the Internet. RON networks can act

as the underlying communication substrate of a distributed



P/S system and improve resilience to network path failures.

However, it is not clear how strict reliability (which is the

focus of this paper) can be implemented atop RON.

Overlay reconfiguring techniques are also used to handle

failures by excluding an unreachable broker from the net-

work [10]. This process, however, is expensive as it requires

propagation of subscriptions among non-faulty brokers to

reconstruct routing paths in the new overlay.

Snoeren et al. [11] use a mesh network to construct

multiple disjoint forwarding paths between subscribers and

publishers. Publications are forwarded redundantly on all

these paths. In the face of failures, message loss is avoided

as long as one forwarding path remains available. This

scheme is likely to incur high bandwidth due to redundant

forwarding of publications – even in absence of failures.

XNET [21] proposes a crash/failover scheme, which is

similar to our system configured with δ = 1 and allows bro-

kers to establish direct connections to downstream brokers

of a failed neighbor. However, unlike our approach, XNET

does not tolerate concurrent failures and does not guarantee

publication delivery.

Our previous work on crash-resilient P/S systems provides

a baseline for the approach presented in this paper [13].

However, our earlier approach is targeted at LAN settings

and enterprise-grade networked environments where path

outages are relatively uncommon. The significance of our

present work on the other hand is highlighted in a wide-area

environment such as the Internet where network disconnec-

tions and path failures are commonplace, and yet applica-

tions require reliable and guaranteed message delivery.

Gryphon [12] provides publication delivery guarantees

similar to our system by taking advantage of a replication-

based scheme in which the routing information at each

broker is replicated across multiple physical machines. In

the face of failures, replicas act as primary/backups. We

compared a crash-tolerant version of our approach against

the replica-based technique of Gryphon and showed that

after failures, live replicas in Gryphon may experience large

load imbalances that are proportionally higher than their

original load limits in absence of failures. Furthermore,

Gryphon’s approach [22] to ensure gap-less publication

delivery requires global knowledge while our scheme uses

localized partition information.

XI. CONCLUSIONS

Provisioning of reliability as part of the messaging system

facilitates the task of developing large-scale distributed ap-

plications. To this end, we developed reliable distributed P/S

algorithms capable of tolerating concurrent failure of brokers

and communication links. Our solution is composed of three

main algorithms that address the problems of subscription

propagation, publication forwarding, and broker recovery.

Our scheme exploits brokers’ limited and localized knowl-

edge of nearby partitions to ensure in-order and exactly-

once publication delivery. We evaluated our approach in

scenarios where the number of concurrent failures exceeds

δ. We demonstrated that a network of 500 brokers can

maintain 97% of its publication delivery throughput despite

concurrent failure of as many as 17% of the brokers.

REFERENCES

[1] “PubSubHubbub,” http://code.google.com/p/pubsubhubbub/.
[2] I. Rose et al., “Cobra: Content-based filtering and aggregation

of blogs and rss feeds.” in NSDI. USENIX, 2007.
[3] G. Li et al., “A distributed service-oriented architecture for

business process execution,” TWEB, vol. 4, 2010.
[4] “Tibco Enterprise Service Bus,” http://www.tibco.com/

resources/software/esb/tibco esb datasheet.pdf.
[5] M. Sadoghi et al., “Efficient event processing through recon-

figurable hardware for algorithmic trading,” in VLDB, 2010.
[6] E. Fidler et al., “The PADRES distributed publish/subscribe

system,” ICFI, 2005.
[7] A. Carzaniga et al., “Design and evaluation of a wide-area

event notification service,” ACM Transactions on Computer
Systems, vol. 19, 2001.

[8] P. R. Pietzuch and J. Bacon, “Hermes: A distributed event-
based middleware architecture,” in ICDCS, 2002.

[9] G. Cugola et al., “The JEDI event-based infrastructure and its
application to the development of the OPSS WFMS,” TSE’01.

[10] G. P. Picco et al., “Efficient content-based event dispatching
in the presence of topological reconfiguration,” in Proceed-
ings of the 23rd International Conference on Distributed
Computing Systems, 2003.

[11] A. C. Snoeren et al., “Mesh-based content routing using
XML,” in Proceedings of the eighteenth ACM symposium on
Operating systems principles, 2001.

[12] S. Bhola et al., “Exactly-once delivery in a content-based
publish-subscribe system,” in Proceedings of the 2002 Inter-
national Conference on Dependable Systems and Networks,
2002.

[13] R. S. Kazemzadeh and H.-A. Jacobsen, “Reliable and highly
available distributed publish/subscribe service,” in SRDS,
2009.

[14] T. D. Chandra and S. Toueg, “Unreliable failure detectors for
reliable distributed systems,” J. ACM, 1996.

[15] A. K. Y. Cheung and H.-A. Jacobsen, “Load balancing
content-based publish/subscribe systems,” ACM Transactions
on Computer Systems, 2010.

[16] R. Sherafat and H.-A. Jacobsen, “Partition-tolerant
publish/subscribe systems,” 2011, http://msrg.org/papers/
12183213.

[17] “SciNet HPC Consortium,” http://www.scinet.utoronto.ca/.
[18] D. Li and D. R. Cheriton, “OTERS (on-tree efficient recovery

using subcasting): A reliable multicast protocol,” in ICNP’98.
[19] L. Opyrchal et al., “Exploiting IP multicast in content-

based publish-subscribe systems,” in IFIP/ACM International
Conference on Distributed systems platforms, 2000.

[20] D. Andersen et al., “Resilient overlay networks,” in Proceed-
ings of the eighteenth ACM symposium on Operating systems
principles, 2001.

[21] R. Chand and P. Felber, “XNET: A reliable content-based
publish/subscribe system,” in Proceedings of the 23rd IEEE
International Symposium on Reliable Distributed Systems,
2004.

[22] Y. Zhao et al., “A general algorithmic model for subscription
propagation and content-based routing with delivery guaran-
tees,” 2005, technical report, RC23669, IBM Research.


