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Abstract—It is a key challenge and fundamental problem in
the design of distributed publish/subscribe systems to construct
the underlying dissemination overlay. In this paper, we focus
on effective practical solution for the MinMax-TCO problem:
Create a topic-connected pub/sub overlay in which all nodes
interested in the same topic are organized in a directly connected
dissemination sub-overlay while keeping the maximum node
degree to the minimum.

Previously known solutions provided an extensive analysis
of the problem and an algorithm that achieves a logarithmic
approximation for MinMax-TCO. Yet, they did not focus on
efficiency of the solution or feasibility of decentralized operation
that would not require full knowledge of the system. Compared to
these solutions, our proposed algorithm produces an overlay with
marginally higher degrees. At the same time, it has drastically
reduced runtime cost, which is corroborated by both theoretical
analysis and empirical evaluation. The latter shows a speedup
by a factor of more than 25 on average for typical pub/sub
workloads.

I. INTRODUCTION

We are witnessing an increasingly widespread use of the

publish/subscribe (pub/sub) communication paradigm in the

design of large-scale distributed systems. Pub/Sub is regarded

as a technology enabler for a loosely coupled form of interac-

tion among many publishing data sources and many subscrib-

ing data sinks. Many applications report benefits from using

this form of interaction, such as application integration [1],

financial data dissemination [2], RSS feed distribution and

filtering [3], [4], and business process management [5]. As

a result, many industry standards have adopted pub/sub as

part of their interfaces. Examples of such standards include

WS Notifications, WS Eventing, the OMG’s Real-time Data

Dissemination Service, and the Active Message Queuing Pro-

tocol.

In pub/sub, subscribers convey their interests in receiving

messages and publishers disseminate publication messages.

The language and data model for subscriptions and publica-

tions vary across systems. In this paper, we focus on the topic-

based pub/sub model. In a topic-based system, publication

messages are associated with topics and subscribers register

their interests in receiving all messages published on topics

of interest. Many commercial systems follow this design. For

example, TIBCO RV [2] has been used extensively for market

data feed dissemination and Google’s GooPS [1] and Yahoo’s

YMB [6] constitute the distributed message exchange for Web-

based applications operating worldwide.

In a distributed pub/sub system, so called pub/sub brokers,

often connected in a federated manner as an application-

level overlay network, efficiently route publication messages

from data sources to sinks. The distributed design was intro-

duced to address pub/sub system scalability. The overlay of

a pub/sub system directly impacts the system’s performance

and the message routing cost. Constructing a high-quality

broker overlay is a key challenge and fundamental problem for

distributed pub/sub systems that has received attention both in

industry [1], [6] and academia [7], [8], [9], [10], [11], [12].

In [7], the authors defined the notion of topic connectivity,

which informally speaking means that all nodes (i.e., pub/sub

brokers) interested in the same topic are organized in a

connected dissemination sub-overlay. This property ensures

that nodes not interested in a topic would never need to con-

tribute to disseminating information on that topic. Publication

routing atop such overlays saves bandwidth and computational

resources otherwise wasted on forwarding messages of no

interest to the node. It also results in smaller routing tables.

An additional desirable property for a pub/sub overlay is

to have a low node degree. High node degrees increase the

probability of hotspots and aggravate the impact of node

failures on the system. A node with a high number of adjacent

links has to maintain those links (i.e., monitor the links and

the neighbors [7], [9]). While overlay designs for different

applications might be principally different, they all share

the strive for maintaining bounded node degrees, whether in

DHTs [13], wireless networks [14], or for survivable network

design [15].

Unfortunately, the properties of topic-connectivity and low

node degree are at odds with each other. Intuitively, a sparse

overlay is unlikely to be topic-connected while a dense

overlay is suboptimal with respect to the node degree. In

light of this dichotomy, Onus and Richa [8] introduced the

fundamental MinMax-TCO publish/subscribe problem: Build

a topic-connected overlay (TCO) such that the overlay degree

(the maximal degree of any node in the overlay) is minimal.

Onus and Richa proved that there exists no efficient solu-

tion for overlay construction that guarantees constant-factor

approximation for MinMax-TCO (unless P=NP). In face of
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this impossibility result, the authors propose the MinMax-

ODA algorithm and a neat proof that it achieves logarithmic

approximation [8].

While the results of [8] establish a fundamental baseline for

any MinMax-TCO algorithm and logarithmic approximation

works sufficiently well in most cases, it is vital for a practical

solution to consider a number of additional design issues. The

running time of MinMax-ODA is O(|V |4|T |) wherein |V |
is the number of nodes and |T | is the number of topics in

the system. This makes the overlay construction prohibitively

expensive. Furthermore, MinMax-ODA is centralized and re-

quires complete knowledge of all the nodes in the system and

their interests.

The main contribution of this paper is the design of a

MinMax-TCO solution that focuses on efficiency and allevi-

ates the above limitations. In its core lies a divide-and-conquer

approach to the problem: We partition the set of nodes into

subsets, build a TCO for each subset, and combine all TCOs

into a global overlay. The appeal of this scheme is in the

substantially faster TCO construction for each subset of nodes

that requires only partial knowledge about the nodes within the

partition. Since the creation of TCOs for different partitions is

independent, the process can be parallelized and decentralized.

Yet, in order to apply this approach we need to overcome a

number of obstacles.

The first challenge is comprised in the impact of partitioning

on the quality of the solution. We show that the minimal

overlay degree is very sensitive to partitioning and it may

increase by up to a factor of Θ(|T |) in the worst case.

Our solution is based on the study of workloads in existing

pub/sub systems and the observation that in practical pub/sub

deployments, only a relatively small number of nodes might

be interested in a large number of topics [3]. We formalize

this as an assumption and optimize our solution for this case.

This assumption does not simplify the MinMax-TCO problem:

the number of bulk subscribers is still too large to make any

brute force solution around the impossibility result effective.

Furthermore, it does not reduce the running time of MinMax-

ODA sufficiently for practical applications. Yet, it allows us

to come up with a partitioning scheme for which the divide-

and-conquer approach retains the logarithmic upper bound on

the overlay degree provided by MinMax-ODA.

Next, we devise an algorithm for the combine phase. Our

first solution is an adaptation of the MinMax-ODA algorithm

along with the proof that the adapted algorithm preserves the

approximation ratio. This solution serves as a baseline for an-

alyzing performance, identifying bottlenecks and weaknesses,

and devising more advanced algorithms. Unfortunately, it does

not improve the running time of MinMax-ODA. Furthermore,

it still requires global knowledge about the interests of each

node.

To address this issue, we observe that not all nodes need

to participate in the combine phase. In each partition, we can

select a number of representative nodes so that their combined

interest covers the interest of all nodes in the partition. We

show that if the combine phase is only performed on the

representative nodes (one representative set from each parti-

tion), then the resulting overlay will still be topic-connected.

Running the combine phase only on representative nodes dras-

tically improves the running time and eliminates the need for

a central point of control that possesses complete knowledge

about the system. At the same time, it may have a profound

impact on the overlay degree unless we select representative

nodes in a careful and controlled way. We show how to

perform this selection so as to tread the balance between

overlay degree and running time.

We evaluated our solution through a series of simulations on

characteristic pub/sub workloads with up to 8 000 nodes and

1 000 topics. The results indicate that on average, our solution

requires less than 4.0% of the running time of known state-

of-the-art algorithms while yielding an insignificant increase

in the maximum node degree of 2.0. While we did not

analyze space complexity or measure the program footprint,

the improvements in this respect are also noteworthy: For

the same pub/sub workload distribution with 8 000 nodes and

under the same environmental settings, our solution was taking

less than a minute to construct the overlay whereas known

state-of-the-art algorithms would experience memory-related

problems (with 14GB of RAM allocated).

II. RELATED WORK

Traditionally, research in the area of distributed pub/sub

systems has been focusing on the efficiency and scalability of

message dissemination from numerous publishers to a large

number of subscribers [16], [17], [18], [19]. A more recent

research direction is to consider the fundamental properties of

the underlying overlays for pub/sub [7], [8], [9], [10], [11],

[12], [20]. This is the direction we pursue in this paper.

Topic-connectivity is explicitly stated as a desirable property

for pub/sub overlays in [7], [8], [9], [12], [21]. A number of

additional topic-based pub/sub systems (e.g., [17], [22]) con-

struct an overlay per-topic thereby attaining topic connectivity

without explicitly discussing this property. A related concept

of creating overlay links according to node interests has been

explored in [11], [20], [23], [24], [25].

The authors of [7] introduced the Minimum Topic Con-

nected Overlay (MinAvg-TCO) problem, which aims at con-

structing a topic-connected overlay with minimum number

of edges, i.e., minimizing the average node degree. They

proved the problem is NP-complete and presented a greedy

algorithm which achieves a logarithmic approximation ratio

for the average node degree. In our previous work [12], a

divide-and-conquer algorithm is developed for MinAvg-TCO,

which dramatically improves the running time at the expense

of a minor increase in the average node degree.

The approach of this paper is different from [12] in several

significant ways. The underlying MinMax-ODA algorithm

exhibits principally different behavior compared to the greedy

MinAvg-TCO solution of [7], which leads to different ana-

lytical results with respect to both node degree and running

time. The MinMax-TCO problem itself is also different from

MinAvg-TCO. In particular, we show that the maximum node
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degree is much more sensitive to partitioning and other ele-

ments employed in the divide-and-conquer approach compared

to the average node degree. Key elements of our solution for

MinAvg-TCO such as the coverage set, produce inadequate

results for MinMax-TCO. In order to address this challenge,

we developed new techniques, such as the division of nodes

into bulk and lightweight subscribers and a representative set

with a coverage factor.

The motivation for defining MinMax-TCO in [8] is that

existing algorithms for MinAvg-TCO may produce an overlay

in which edges are unevenly distributed across nodes. The

authors point out that the maximum node degree could be

as bad as Θ(|V |) compared to that of the optimal solution.

More recently, Onus and Richa [9] introduced another prob-

lem, Low-TCO, which simultaneously considers average and

maximum node degree. The solution for Low-TCO proposed

in [9] achieves a sub-linear approximation on both maximum

and average node degrees.

III. BACKGROUND

In this section we present some definitions and background

information essential for the understanding of the algorithms

developed in this paper.

Let V be the set of nodes and T be the set of topics.

The interest function Int is defined as Int : V × T →
{true, false}. Since the domain of the interest function is a

Cartesian product, we also refer to this function as an interest

matrix. Given an interest function Int , we say that a node v
is interested in some topic t if and only if Int(v, t) = true.

We then also say that v subscribes to t. The topic set which

the node v subscribes to is denoted as Tv , and we call |Tv|
the subscription size of node v.

An overlay network G(V,E) is an undirected graph over the

node set V with the edge set E ⊆ V × V . Given an overlay

network G(V,E), an interest function Int , and a topic t ∈ T ,

we say that a subgraph Gt(Vt, Et) of G is induced by t if

Vt = {v ∈ V |Int(v, t)} and Et = {(v, w) ∈ E|v ∈ Vt ∧ w ∈
Vt}. An overlay G is called topic-connected if for each topic

t ∈ T , the subgraph Gt of G induced by t contains at most

one connected component.

Beside topic-connectivity, it is important to keep the degrees

of the nodes in the overlay low. Onus and Richa [8] introduced

the MinMax-TCO problem for minimizing the maximum

degree in a topic-connected overlay. The formal definition of

the problem is as follows.

Definition 1. MinMax-TCO(V, T, Int): Given a set of nodes

V , a set of topics T , and the interest function Int , construct a

topic-connected overlay network TCO(V, T, Int , E) with the

smallest possible maximum node degree.

MinMax-TCO was proven to be NP-complete, and it can

not be approximated by a polynomial time algorithm within

a constant factor unless P=NP [8]. Onus et al. proposed

the MinMax-ODA algorithm, which always delivers a TCO

that has a maximum node degree within at most log(|V ||T |)
times the minimum possible maximum node degree for any

TCO. Here, we refer to the MinMax-ODA algorithm by the

shorter name, GM-M (Greedy algorithm for MinMax-TCO),

for consistency with our notation. GM-M is specified in

Algorithm 1 and operates in a greedy manner as follows: It

starts with an empty set of edges and iteratively adds carefully

selected edges one by one until topic-connectivity is attained.

The edge selection criterion is as follows: If there exist edges

whose addition to the overlay does not increase the maximum

node degree, the algorithms picks an edge with the largest

contribution from the set of all such edges. Otherwise, an edge

with the largest contribution among all edges is selected. The

contribution of an edge e, denoted as contrib(e), is defined as

the number of topic-connected components reduced by adding

the edge to the current overlay.

Algorithm 1 Greedy algorithm for MinMax-TCO

GM-M(I(V, T, Int))

Input: I(V, T, Int)
Output: A topic-connected overlay TCO(V, T, Int , EGMM)

1: Epot ← ∅
2: for all e = (v, w) s.t. (w, v) 6∈ Epot do

3: add e to Epot

4: Enew ← buildMMEdges(V, T, Int , ∅, Epot )
5: return TCO(V, T, Int , Enew )

Algorithm 2 Overlay Construction for GM-M Algorithm

buildMMEdges(V, T, Int , Ecur , Epot )

Input: V , T , Int , Ecur , Epot

// Ecur : Set of current edges that exist in the overlay

// Epot : Set of potential edges that can be added

Output: Edge set Enew that combined with Ecur , forms a TCO

1: Enew ← ∅
2: for all e = (v, w) ∈ Epot do

3: contrib(e)← |{t ∈ T |Int(v, t) ∧ Int(w, t)∧
v, w belong to different connected components for t in G(V,Ecur )}|

4: while G(V,Enew ∪ Ecur ) is not topic-connected do

5: e ← find edge e s.t. contrib(e) is maximum and e increases the

maximum degree of G(V,Enew ∪ Ecur ) minimally

6: Enew ← Enew ∪ {e}
7: Epot ← Epot − {e}
8: for all e = (v, w) ∈ Epot do

9: contrib(e) ← update the contribution of a potential edge e as

the reduction on the number of topic-connected components which

would result from the addition of e to G(V,Enew ∪ Ecur )

10: return Enew

The following results about GM-M were proven in an

elegant fashion in [8]:

Lemma 1 (GM-M Approximation Ratio & Running Time).

The overlay network output by Algorithm 1 has a max-

imum node degree within a factor of log(|V ||T |) of

the maximum node degree of the optimal solution for

MinMax-TCO(V, T, Int). Algorithm 1 has a running time of

O(|Epot |
2|T |) = O(|V |4|T |).

IV. DIVIDE-AND-CONQUER FOR MINMAX-TCO

Taking into account the GM-M running time of O(|V |4|T |),
the number of nodes is the most significant factor determening

the performance and scalability of the solution for MinMax-

TCO. In view of this, we devise a divide-and-conquer strategy
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to solve the problem: (1) divide the MinMax-TCO problem

into several sub-overlay construction problems that are similar

to the original overlay but with a smaller node set, (2) conquer

the sub-MinMax-TCO problems independently and build sub-

overlays into sub-TCOs, and then (3) combine these sub-TCOs

to one TCO as a solution to the original problem.

In this section we present the design steps and key decisions

of the divide-and-conquer approach for MinMax-TCO. We

show analytically that the resulting algorithm leads to a

significantly improved running time cost and reduced knowl-

edge requirement as compared to the GM-M algorithm. In

Section VI, we quantify these improvements empirically.

A. GM-M as a Building Block for Divide-and-Conquer

In this section, we analyze the GM-M algorithm in greater

depth and derive several new results about its running time.

GM-M is employed as a building block in our divide-and-

conquer algorithms and it serves as the baseline for our

experimentation.

First, we show that the maximum node degree of the overlay

produced by GM-M is bounded by the maximum subscription

size in the input.

Lemma 2 (Bound on the maximum degree). The max-

imum node degree of the TCO produced by GM-M is

O(maxv∈V |Tv|).

In [8], Algorithm 1 is the only entry point for Algorithm 2.

This means that Ecur is always equal to ∅ and Epot to V ×V
upon the invocation of Algorithm 2. When we adapt GM-M
for the combine phase of the divide-and-conquer approach,

we need to apply GM-M on a collection of TCOs already

produced in the conquer phase. Therefore, we have to extend

the analysis of GM-M for the case when Ecur is non-empty

and Epot is equal to (V × V )\Ecur . Let Enew be the set of

edges returned by Algorithm 2. Denote the maximal degree of

G(V,E) by D(V,E) and the maximal degree of the optimal

solution for MinMax-TCO(V, T, Int) by DOPT (V, T, Int).
Then, the following result holds:

Lemma 3. If invoked on V , T , Int , Ecur , and Epot such that

Ecur ∪ Epot = V × V , Algorithm 2 outputs Enew such that

(a) G(V,Ecur ∪ Enew ) is topic-connected and

(b) the maximum node degree D(V,Ecur ∪Enew ) is bounded

by O(D(V,Ecur ) +DOPT (V, T, Int) · log(|V ||T |)).

We provide detailed proofs of Lemma 2 and 3 in the full

version of this paper [26].

B. Divide and Conquer Phases of the Solution

There exist two principal methods to divide the nodes: (1)

node clustering and (2) random partitioning. Node clustering is

oganizing the original node set into groups so that nodes with

similar interests are placed in the same group while nodes

with diverging interests belong to different groups. Random

partitioning assigns each node in the given node set to one of

the partitions based on a uniformly random distribution. Once

the partitions are determined, the existing GM-M algorithm

can be employed to conquer the sub-MinMax-TCO problems

by determining inner edges used for the construction of the

sub-overlays.

The idea of node clustering seems attractive because well-

clustered nodes with strongly correlated interests would result

in lower maximum node degrees in the sub-TCOs produced by

GM-M. The problem with this approach is the high runtime

cost of clustering algorithms taking into account the large

number of nodes and varying subscription size. Additionally,

they require the computation of a “distance” metric among

nodes. In our case this translates to calculating pairwise

correlations among node interests with significant run time

cost implications. It is challenging to fit node clustering into

the divide-and-conquer approach so that the latter is still

superior to the GM-M algorithm in terms of running time cost.

Furthermore, it is difficult to devise an effective decentralized

algorithm for node clustering that would not require complete

knowledge of V and Int . Finally, node clustering by interests

may yield clusters that vary in size depending on the clustering

algorithm used. On the other hand, the divide-and-conquer

approach performs optimally when partitions are equal-sized

and there are no large clusters that stand out.

Algorithm 3 Naive algorithm for divide and conquer phases

Input: V, T, Int , p

// p: the number of partitions, 1 6 p 6 |V |.
Output: A list of TCOs ListTCO , one TCO for each partition

1: ListTCO ← ∅
2: Randomly divide V into p partitions Vd, d=1, 2, ..., p

3: for d = 1 to p do

4: Intd ← Int |Vd

5: TCOd(Vd, T, Intd, Ed)←GM-M(Vd,T ,Intd)

6: add TCOd to ListTCO

7: return ListTCO

We choose random partitioning for the divide-and-conquer

approach because it is extremely fast, more robust than node

clustering, easier to tune, and it can be realized in a decentral-

ized manner. Furthermore, the construction of inner edges for

each overlay only requires knowledge of node interests within

the overlay. Hence, random partitioning can be oblivious to

the composition of nodes and their interests. The number of

partitions p is given as an input parameter and each sub-

overlay has k = |Vd| =
|V |
p

nodes, where d = 1, ..., p. This

equal-sized division is optimal with respect to the running

time. The resulting algorithm for the divide and conquer

phases is presented in Algorithm 3.

Unfortunately, random partitioning may place nodes with

diverging interest into the same partition thereby reducing

the amount of correlation that is present in the original node

set. As Lemma 4 shows, this may have a profound effect

on the maximum node degree. Consider the overlay G(V,E)
for the conquer phase produced by this algorithm where

ListTCO [d] = TCOd(Vd, T, Intd, Ed), E = ∪p
d=1Ed. Then,

Lemma 4. There is an instance I(V, T, Int) of MinMax-

TCO on which the maximum degree D(V,E) of the overlay

output by Algorithm 3 is greater by a factor of Θ(|T |) than
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the maximum node degree DOPT (V, T, Int) of the optimal

solution for I(V, T, Int).

Proof: Construct an instance I(V, T, Int) of MinMax-

TCO as follows: Consider the topic set T = {t1, t2, ..., tm} of

size m = 2h. Node set V consists of h+1 = logm+1 subsets,

denoted as Ai, 0 ≤ i ≤ h; each node subset Ai contains 2i

nodes, i.e., Ai = {v(i,1), ..., v(i,2i)}. Each node v(i,j), 1 ≤ j ≤
2i subscribes to a topic set T(i,j) of size m

2i , defined as follows:

V =

h⋃

i=0

Ai T = {t1, ..., tm}

A0 = {v(0,1)} T(0,1) = {t1, ..., tm}

A1 = {v(1,1), v(1,2)} T(1,1) = {t1, ..., tm
2
}, T(1,2) = {tm

2
+1, ..., tm}

.

.

.

.

.

.

Ai = {v(i,1), ..., v(i,2i)} T(i,j) = {t jm

2i
+1

, ..., t (j+1)m

2i

}, 1 ≤ j ≤ 2
i

.

.

.

.

.

.

Ah = {v(h,1), ..., v(h,m)} T(h,1) = {t1}, ..., T(h,m) = {tm}

The optimal overlay TCOOPT for I(V, T, Int) is shown in

Fig.1(a). Its maximum node degree is a constant: DOPT = 3.

Consider the output of Algorithm 3. Due to the random

partitioning in Line 2, there is a chance for generating a

partition that consists of nodes in A0 = {v(0,1)} and Ah =
{v(h,1), ..., v(h,m)} (see Fig.1(b)). To attain topic-connectivity

for this partition, v(0,1) has to be linked to all m nodes in Ah,

which makes the node degree of v(0,1) to be m = |T |.

Fig. 1. (a) TCOOPT with DOPT = 3. (b) TCO for random partitioning.

Consequently, the maximum degree D(V,E) of the over-

lay output by Algorithm 3 for I(V, T, Int) is greater by a

factor of Θ(m3 ) = Θ(|T |) than the maximum node degree

DOPT (V, T, Int) of the optimal solution for I(V, T, Int).
Essentially, Lemma 4 shows that if we use random parti-

tioning for the divide-and-conquer approach, then the overlay

degree for the conquer phase alone may exceed the overlay

degree for the complete optimal solution by a factor of

Θ(|T |). Furthermore, our empirical validation indicates that

not only for a manually constructed worst case but also for

the typical pub/sub workloads, random partitioning causes

significant increase in the maximum node degree. Fig. 2

illustrates this effect for the default workload defined and

motivated in Section VI. It compares the maximum degree

for the conquer phase produced by Algorithm 3 with the total

degree of the overlay produced by GM-M.

This effect of increased maximum degree occurs when a

node subscribed to a large number of topics (i.e., a bulk

subscriber) is placed into the same partition with nodes

whose subscriptions are not correlated. Then, such nodes do

not benefit from creating a link to each other and need to

connect to the bulk subscriber. Our solution to this problem

is based on the study of representative pub/sub workloads

used in actual applications that are described and characterized

in [21]. According to these characterizations, the “Pareto 80–

20” rule works for pub/sub workloads: Most nodes subscribe

to a relatively small number of topics. The phenomenon of

increased maximum degree due to partitioning still exists in

such workloads as the example of Lemma 4 indicates. Yet,

this observation allows us to devise an effective solution: We

provide an algorithm that applies random partitioning only to

such lightweight subscribers, performs the conquer phase for

lightweight partitions, and merges them with bulk subscribers

at the combine phase.
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Fig. 2. Poor performance of naive divide-and-conquer

Formally, given an instance I(V, T, Int) for MinMax-TCO,

we introduce an additional parameter called bulk subscription

threshold η, η ∈ (0, |T |]. η determines the division of V
into the set of bulk and lightweight subscribers B and L,

respectively: B = {v : |Tv| > η} and L = {v : |Tv| ≤ η}.

Algorithm 4 applies random partitioning to L, creates a TCO

for each of the partitions, and returns a list of these TCOs.

Algorithm 4 Divide and conquer phases for lightweight nodes

conquerLightweight(I(V, T, Int), η, p)

Input: I(V, T, Int), η
// η: the bulk node threshold;

// p: the number of partitions for lightweight nodes.

Output: A list of TCOs ListTCO , one TCO for each partition

1: B ← {v ∈ V : |Tv | > η}, IntB ← Int |B
2: ListTCO ← ∅
3: Randomly divide L = V −B into p partitions Ld, d = 1, ..., p

4: for d = 1 to p do

5: Intd ← Int |Vd

6: TCOd(Vd, T, Intd, Ed)←GM-M(Ld,T ,Intd)

7: add TCOd to ListTCO

8: return ListTCO

Lemma 2 can be directly applied to the overlay output by

Algorithm 4 to produce a bound on its maximum degree.

Lemma 5 (Bound on the maximum degree for the conquer

phase). The maximum node degree of an overlay G(V,E)
produced by Algorithm 4 is bounded by the bulk subscription

threshold: D(V,E) = O(η).

We now analyze the running time of Algorithm 4.
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Lemma 6 (Running time for the conquer phase). The running

time cost of Algorithm 4 is O( |L|4|T |
p3 ).

Proof: The loop in Lines 4–7 of Algorithm 4 uses GM-M
to build a sub-TCO for each sub-overlay. Each sub-overlay has

at most
|L|
p

nodes so that by Lemma 1, the running time for

constructing each sub-TCO is O( |L|4|T |
p4 ). Thus, the running

time for constructing all p overlays is O( |L|4|T |
p3 ).

This algorithm is used as a building block for the complete

divide-and-conquer solution to MinMax-TCO presented in

Section IV-C.

C. Combine Phase of the Solution

Algorithm 5 Divide-and-Conquer with Bulk Nodes and

Lightweight Nodes for MinMax

DCB-M(I(V, T, Int), η, p)

Input: I(V, T, Int), η

// η: the bulk node threshold;

// p: the number of partitions for lightweight nodes.

Output: A topic-connected overlay TCO(V, T, Int , EDCB)

1: ListTCO ← conquerLightweight(I(V, T, Int), η, p)

2: TCO(V, T, Int , EDCB)← combineB&L(V, T, Int ,ListTCO )

3: return TCO(V, T, Int , EDCB)

Algorithm 6 Combine B nodes and L nodes greedily

combineB&L(V, T, Int ,ListTCO )

Input: V, T, Int ,ListTCO

/* ListTCO : a list of p node-disjoint TCOs for lightweight nodes:

ListTCO [d] = TCOd(Ld, T, Intd, Ed), d=1, ..., p. */

Output: A topic-connected overlay TCO(V, T, Int , EDCB )

1: B ← V −
⋃p

d=1 Ld // Ld is short for ListTCO [d].Ld

2: EinDCB ←
⋃p

d=1 Ed // Ed is short for ListTCO [d].Ed

3: EpotDCB ← {e = (v, w)|(v ∈ B,w ∈ V ) ∧ (w, v) 6∈ EpotDCB}
4: EpotDCB ← EpotDCB

⋃
{e = (v, w)|v ∈ Li, w ∈ Lj , i < j)}

5: EoutDCB ← buildMMEdges(V, T, Int , EinDCB, EpotDCB)

6: EDCB ← EinDCB ∪ EoutDCB

7: return TCO(V, T, Int , EDCB)

In the core of our design for the combine phase solution

lies the observation that Algorithm 2 can be used to merge

the sub-overlays for different partitions and the set of bulk

subscribers into a single TCO. To implement this idea, we

devise Algorithm 6 that applies Algorithm 2 on a union of the

sub-overlays produced at the conquer phase by Algorithm 4.

Algorithm 5 called DCB-M, presents a complete divide-and-

conquer solution for MinMax-TCO.

Lemma 7. (Correctness) Algorithm 5 is correct: it yields an

overlay such that for every topic t, all nodes interested in t
are organized in a single connected component.

Given an instance I(V, T, Int) for MinMax-TCO, let

TCODCB be the TCO produced by Algorithm 5. Denote its

maximum node degree as DDCB. There are two types of edges

that form the TCODCB: (1) EinDCB, the inner edges con-

structed by Algorithm 4, EinDCB =
⋃p

d=1 Ed and (2) EoutDCB,

the outer edges conjoining bulk subscribers and lightweight

node sub-TCOs, which are created in Line 5 of Algorithm 6.

The maximum node degree induced by EinDCB and EoutDCB

are denoted as DinDCB and DoutDCB, respectively. It holds that

DDCB ≤ DinDCB +DoutDCB. (1)

Equation 1 along with Lemma 5 and Lemma 3 allow us to

establish an upper bound on the degree of the overlay produced

by DCB-M.

Lemma 8 (Degree bound for DCB-M). The overlay network

output by Algorithm 5 has maximum node degree DDCB =
O(η +DOPT (V, T, Int) · log(|V ||T |)).

Corollary 1 (Approximation ratio for DCB-M). If we regard

the bulk node threshold as a constant factor or if the maximum

degree EinDCB of the sub-overlays constructed at the conquer

phase is smaller than the maximum degree DOPT (V, T, Int)
of the optimal overlay for MinMax-TCO(V, T, Int), then

DDCB = DOPT (V, T, Int) ·O(log(|V ||T |)). (2)

If the conditions in Corollary 1 hold, then the DCB-M
algorithm achieves the same logarithmic approximation ratio

as the GM-M algorithm (Algorithm 1).

Next, we consider the running time of the DCB-M algo-

rithm. Let TinDCB and ToutDCB denote the running time to

build EinDCB and EoutDCB, respectively. Let TDCB be the total

running time cost of Algorithm 5. Then, we obtain the running

time of DCB-M with:

Lemma 9 (Running time for DCB-M). The running time of

Algorithm 5 is TDCB = O(TinDCB + ToutDCB) = O(|T | ·
(|B||V |+ |L|2)2).

Proof: TinDCB = O( |L|4|T |
p3 ) following Lemma 6.

ToutDCB is determined by Algorithm 6, whose running time

is dominated by the invocation of Algorithm 2 in Line 5. Based

on Lemma 1, we have:

ToutDCB = O(|T | · |EpotDCB|
2)

= O(|T | · (|B||V |+ |L|2)2) (3)

TDCB = O(TinDCB +ToutDCB)

= O(ToutDCB) = O(|T | · (|B||V |+ |L|2)2) (4)

In summary, Algorithm 5 has asymptotic performance very

similar to that of Algorithm 1, both with respect to the maxi-

mum degree and running time. As both the above analysis and

experimental evaluations in Section VI indicate, it produces a

marginally higher overlay degree at marginally better runtime

cost. Furthermore, the combine phase still requires complete

knowledge of V and Int , which makes decentralization in-

feasible. These shortcomings motivate the development of an

improved solution for the combine phase. Our improvement is

based on the notion of Representative Set, which we explain

next.

Given I(V, T, Int) for MinMax-TCO and a topic t, t ∈ T ,

we denote the set of subscribers to t by subs(t), subs(t) =
{v|v ∈ V ∧ Int(v, t)}. Then, the notion of a representative set

(rep-set) is defined as follows:

Definition 2 (Representative set). Given I(V, T, Int), a rep-

set with the coverage factor λ, denoted as R(λ) (or R), is a

subset of V such that

|subs(t)|R| ≥ min{λ, |subs(t)|}, ∀t ∈ T (5)
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A node r ∈ R(λ) is referred to as a representative node

(rep-node).

As illustrated in Figure 3, a rep-set is a subset of overlay

nodes that represents the interests of all the nodes in the over-

lay. Each topic of interest is covered by at least λ subscribers in

R unless the total number of subscribers to this topic is smaller

than λ. The complete node set V is always a rep-set, but there

might exist many other rep-sets with much fewer rep-nodes. In

essence, these nodes can function as bridges for the purpose of

determining cross-TCO connections. Observe that it is possible

to attain full topic-connectivity only by using cross-TCO links

among rep-nodes for different partitions. Suppose we have a

number of TCOs, and each TCO is represented by a rep-set

(of a smaller size). To achieve topic-connectivity for a topic

t ∈ T , we can just connect nodes from different rep-sets which

are interested in t.

Fig. 3. R1 = {v1, v2, v3, v4} and R2 = {u1, u4, u5, u6} are rep-sets
with λ = 2 for TCO1 and TCO2 respectively; a complete TCO for all
nodes is obtained by adding cross-TCO links between R1 and R2.

For typical pub/sub workloads and sufficiently large par-

titions, minimal rep-sets are several times smaller than the

total number of nodes. This leads to significant benefits if we

consider only rep-nodes as candidates for cross-TCO links.

One, the running time of the overlay construction algorithms

discussed in this paper is roughly proportional to the number

of nodes up to the fourth degree, therefore our algorithm that

only considers rep-nodes runs much faster. Two, calculation

of cross-TCO links no longer requires complete knowledge of

V and Int , and only a partial view of rep-nodes from rep-sets

and their interests is needed. Three, rep-sets of different TCOs

can be computed in parallel in a fully decentralized fashion.

At the same time, minimality of rep-sets also has an adverse

effect on the maximum overlay degree due to reduced corre-

lation across rep-sets for different TCOs. Revisit the instance

I(V, T, Int) of MinMax-TCO described in the example of

Lemma 4. Suppose V is divided into two partitions: a partition

of bulk subscribers that includes node subsets Ai, 0 ≤ i ≤
h− 1 and a partition of lightweight subscribers that includes

node subset Ah. The minimal rep-set for the first partition

contains a single node v(0,1) whereas the minimal rep-set for

the second partition contains all nodes in Ah. If we merge

the rep-sets at the combine phase, the degree of v(0,1) will be

|Ah| = Θ(|T |). On the other hand, if we merge the whole

partitions, the optimal overlay will be the one depicted in

Fig. 1(a) with constant maximum degree.

The difference arises due to the fact that in the former case,

v(0,1) serves the focal point for all cross-overlay links while

in the latter case, these links are evenly distributed across all

the nodes of the first partition. We employ two techniques to

prevent the above effect. First, we only use rep-sets for the

partitions of lightweight nodes and not for bulk subscribers.

This is because the degree of lightweight nodes is bounded by

O(η) as we later show in Lemma 11 so that the effect is not as

significant for lightweight nodes compared to bulk subscribers.

Second, we use a coverage factor greater than one to ensure

that there are always multiple choices when connecting the

nodes for any topic.

We still need to consider, how to efficiently determine a

minimal rep-set given V , T , Int , and λ. The problem of

computing a minimal rep-set set is equivalent (through a

linear reduction) to a variation of the classic NP-complete Set

Cover problem, in which each item has to be covered by at

least λ sets. Algorithm 9 provides a greedy implementation

that attains a provable logarithmic approximation [27]. The

algorithm starts with an empty rep-set and continues adding

nodes to the rep-set one by one until all topics of interest are

λ-covered, i.e., covered by at least λ nodes. At each iteration,

the algorithm selects a node that is interested in the largest

number of topics that are not yet λ-covered.

Algorithm 8 presents the resulting implementation for com-

bining sub-TCOs. The algorithm operates in two phases. First,

it determines a rep-set for each sub-TCO. Note that the rep-set

for TCOd does not need to cover all of Td. It suffices to cover

Tout d = Td

⋂
(
⋃

i6=d Ti). Second, the algorithm connects all

the nodes in the rep-sets as well as bulk subscribers into a TCO

in a greedy manner by using Algorithm 2. Algorithm 7 called

DCBR-M, presents our complete solution for MinMax-TCO.

Below, we establish correctness, approximation ratio and

running time properties for the DCBR-M algorithm.

Lemma 10 (Correctness). Algorithm 7 is correct: it yields an

overlay such that for every topic t, all nodes interested in t
are organized in a single connected component.

Following the notations for DCB-M algorithm, we denote

the TCO produced by Algorithm 7 as TCODCBR and its

maximum node degree as DDCBR. Observe that by operating

on a reduced set of nodes at the combine phase, the invocation

of Algorithm 2 in line 12 of Algorithm 8 solves an instance

of MinMax-TCO(BR, T, Int |BR) where BR is a union of B
and all rep-sets

⋃p

d=1 Rd. The fact that DDCBR ≤ DinDCBR +
DoutDCBR along with Lemma 5 and Lemma 3 allow us to

establish an upper bound on the degree of the overlay produced

by DCBR-M.

Lemma 11 (Degree bound for DCBR-M). The overlay net-

work TCODCBR output by Algorithm 7 has maximum node de-

gree: DDCBR = O(η+DOPT (BR, T, Int |BR) · log(|BR||T |)).

According to Lemma 11, if we choose a sufficiently

large coverage factor λ so that DOPT (BR, T, Int |BR) ≈
DOPT (V ,T , Int), then Algorithm 7 will generate a TCO

whose maximum node degree is asymptotically the same as

that of the TCO output by Algorithm 5.
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Algorithm 7 Divide-and-Conquer with Bulk Nodes and

Lightweight Rep-nodes for MinMax

DCBR-M(I(V, T, Int), η, p, λ)

Input: I(V, T, Int), η, p, λ

// λ: the coverage factor.

Output: A topic-connected overlay TCO(V, T, Int , EDCBR)

1: LTCO ← conquerLightweight(I(V, T, Int), η, p)

2: TCO(V, T, Int , EDCBR)← combineB&LReps(V, T, Int , LTCO , λ)

3: return TCO(V, T, Int , EDCBR)

Algorithm 8 Combine B nodes and L rep-nodes greedily

combineB&LReps(V, T, Int ,ListTCO , λ)

Input: V, T, Int ,ListTCO , λ

Output: A topic-connected overlay TCO(V, T, Int , EDCBR)

1: B ← V −
⋃p

d=1 Ld // Ld is short for ListTCO [d].Ld

2: EinDCBR ←
⋃p

d=1 Ed // Ed is short for ListTCO [d].Ed

3: for d = 1 to p do

4: Td ←
⋃

v∈Ld
Tv

5: for d = 1 to p do

6: Tout d ← Td

⋂
(
⋃

i 6=d Ti)
7: Rd ←getRepSetFromNodes(Ld, Tout d, Int , λ)

8: R←
⋃p

d=1 Rd

9: BR ← B ∪R

10: EpotDCBR ← {e = (v, w)|(v ∈ B,w ∈ BR) ∧ (w, v) 6∈ EpotDCBR}
11: EpotDCBR ← EpotDCBR

⋃
{e = (v, w)|v ∈ Ri, w ∈ Rj , i < j)}

12: EoutDCBR ← buildMMEdges(BR, T, Int |BR, EinDCBR|BR, EpotDCBR)

13: EDCBR ← EinDCBR ∪ EoutDCBR

14: return TCO(V, T, Int , EDCBR)

Algorithm 9 Determine a representative set for a partition

getRepSetFromNodes(Vd, Tout d, Int , λ)

Input: Vd, Tout d, Int , λ

Output: Rd: A representative set for Vd

1: Start with TtoCover = Tout d and Rd = ∅
2: for all t ∈ TtoCover do

3: NtoCover [t] = λ

4: while TtoCover 6= ∅ do

5: r ← argminv∈Vd−Rd
( 1
|{t|t∈TtoCover∧Int(v,t)}|

)

6: Rd ← Rd ∪ {r}
7: for all t ∈ TtoCover ∧ Int(r, t) do

8: NtoCover [t]← NtoCover [t]− 1

9: if NtoCover [t] = 0 then

10: TtoCover ← TtoCover − {t}
11: Return Rd

Using the same reasoning as in Lemma 6, we can derive

the running time cost of DCBR-M.

Lemma 12 (Running time for DCBR-M). The running time

of Algorithm 7 is TDCBR = O(|T | · ((|B|+ |R|)4 + |L|4

p3 )).

Proof:

ToutDCBR = O(|T | · |EpotDCBR|
2)

= O(|T | · ((|B| · (|B|+ |R|) + |R|2)2))

= O(|T | · ((|B|+ |R|)4)) (6)

TDCBR = O(ToutDCBR +TinDCBR)

= O(|T | · ((|B|+ |R|)4 +
|L|4

p3
)) (7)

Lemma 12 shows that if representative sets are significantly

smaller than partitions, the bulk subscribers threshold is se-

lected so that there are few bulk subscribers, and the number

of partitions is sufficiently large, then Algorithm 7 achieves

significant speedup compared to Algorithm 5. This is also

corroborated by our experiments in Section VI.

D. Decentralizing the DCBR-M algorithm

Note that the DCBR-M algorithm as presented above is fully

centralized. It is possible to decentralize it in the following

way: (1) each lightweight node autonomously decides which

random partition it belongs to and registers itself under the

partition name (it is possible, e.g., to use a DHT for that

purpose), (2) nodes from the same partition learn about each

other and establish a communication channel, (3) different

partitions construct sub-TCOs in parallel, i.e., the nodes within

each partition exchange their interests and execute the GM-M
algorithm, (4) different partitions compute rep-sets in parallel,

(5) bulk subscribers and rep-nodes from different rep-sets

communicate their interests and compute outer edges. Note

that the original GM-M algorithm does not lend itself to such

decentralization.

This decentralization scheme has several important benefits:

reducing the total runtime cost, optimizing distributed resource

utilization, and balancing the computational load. The time

TinDCBR for computing inner edges becomes O( |L|4

p4 ) and the

total time TDCBR becomes

TDCBR = O(|T | · ((|B|+ |R|)4 +
|L|4

p4
)). (8)

Furthermore, decentralization eliminates the need for a

central entity that must maintain a global knowledge of all

nodes and their interests. To quantify this benefit, we introduce

additional performance characteristic of the algorithm called

potential neighbor set, which is the set of other nodes a

node has to learn about in the course of the algorithm. This

characteristic is important because gathering nodes’ interests

in a scalable and robust decentralized manner is a problem

in its own right. Additionally, the fan-out of node v in the

overlay produced by any algorithm cannot exceed the size

of the potential neighbor set of v. Therefore, minimizing the

potential neighbor set has an additional desirable effect from

this point of view.

To formalize this argument, we define the potential neighbor

ratio for a node v, denoted as pn-ratio(v). Potential neighbor

ratio is the size of potential neighbor set for v (including v
itself) normalized by the total number of nodes |V |. For any

centralized algorithm, this ratio is equal to 1. For DCBR-M,

the potential neighbor set for v consists of three subsets: (1)

nodes in the same partition as v: Vd such that v ∈ Vd (if v
is a lightweight node); (2) bulk subscribers B (if v is a bulk

subscriber itself or it belongs to some rep-set); and (3) all

rep-nodes from other partitions: {u|u ∈ Ri s.t. v ∈ B ∨ v ∈
Rd ∧ Ri 6= Rd} (if v is a bulk subscriber or it belongs to

the rep-set Rd). Consequently, the potential neighbor ratio is

always the biggest for lightweight nodes selected as rep-nodes.

For such nodes, pn-ratio(v) = |L|
|V |·p + |B|

|V | +
|R|
|V | ·

p−1
p

.

We extend the definition of a potential neighbor ratio to

apply to the entire node set:

pn-ratio(V ) = max
v∈V

pn-ratio(v) =
|L|

|V | · p
+
|B|

|V |
+
|R|

|V |
·
p− 1

p
(9)
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Equation 9 shows that DCBR-M has improved pn-ratio
compared to any centralized algorithm (such as GM-M). This

is further confirmed by our experiments in Section VI.

V. SELECTING PARAMETERS

This section discusses how to choose optimal parameter val-

ues for our DCBR-M algorithm. Algorithm 7 is parametrized

with (1) the bulk subscriber threshold η, (2) the coverage factor

λ, and (3) the number of partitions for lightweight nodes p.

The choice of values for these parameters substantially affects

the algorithm’s behavior. It is therefore essential to identify

a combination of them that leads to satisfactory performance.

First, we pick reasonable values for η and λ for typical pub/sub

workloads; then, we provide a numerical method to determine

the optimal value of p.

The selection of the bulk subscriber threshold η exhibits the

tradeoff between maximal overlay degree and running time:

Small threshold values cause all nodes to be treated as bulk

subscribers thereby favoring the degree over running time and

making the overall performance very similar to that of GM-M.

On the other hand, large threshold values favor the running

time and pn-ratio at the expense of increased overlay degree.

Fortunately, even relatively small threshold values result in

small bulk subscriber sets for typical pub/sub workloads that

follow the “Pareto 80–20” rule, as discussed in Section IV-B.

In our implementation, we sort the subscribers by subscription

size and choose η that causes ≤ 20% of the nodes to be

considered bulk subscribers.

The coverage factor selection exhibits a similar tradeoff: If

we choose the coverage factor to be as large as the size |L|/p
of the partitions, then the behavior of Algorithm 7 becomes

identical to that of Algorithm 5. On the other hand, λ = 1
minimizes the size of rep-sets, pn-ratio, and running time

but leads to a severe impact on the node degree. According to

our experiments in Section VI, an increase in λ beyond 3 only

marginally improves the node degree, even for large partitions.

The rep-sets for λ = 3 are significantly smaller for such large

partitions than partitions themselves so that we choose 3 as

the default value for λ.

The tradeoff in the selection of the number p of partitions is

more complex. When p is as large as |L|, the performance is

dominated by the invocations of the combineB&LReps()

function in the combine phase. As p decreases, the effect of

executing the GM-M algorithm at the conquer phase becomes

more and more pronounced, both with respect to the degree

and the running time. When we use a very small number of

partitions, it starts to dominate the running time assuming |B|
is relatively small. Therefore, we need to find intermediate

values of p that minimize the running time and pn-ratio.

The bound on the running time TDCBR is established by

Lemma 12 and Equation 9 for centralized and distributed

implementations, respectively. Since the bound on TDCBR

depends on |R|, which is difficult to assess analytically, we

use an adaptive way for selecting p. Since partitioning the

nodes and computing the rep-sets is relatively cheap, we

try partitioning for different p values. Each time, we only

TABLE I
ALGORITHMS FOR SOLVING THE MINMAX-TCO PROBLEM

GM-M Greedy Merge algorithm for MinMax
DCB-M Divide-and-Conquer with Bulk and Lightweight Nodes
DCBR-M Divide-and-Conquer with Bulk and Lightweight Rep-nodes
RingPT Ring-per-topic algorithm

TCOALG
* The TCO produced by ALG

DALG Maximum node degree in TCOALG
dALG Average node degree in TCOALG

TALG Running time of ALG
* ALG is GMM, DCB, DCBR or RingPT for the GM-M, DCB-M,

DCBR-M or RingPT algorithms, respectively.

compute the rep-sets and thus obtain |R| without running the

expensive calculation of inner and outer edges. Then, we use

fast numerical methods to approximately determine the value

of p that minimizes TDCBR. We also apply the same technique

to Equation 9 in order to determine the value of p that is

optimal for pn-ratio(V ).

VI. EVALUATION

We implemented all algorithms described in this paper in

Java and compared them under various experimental condi-

tions. Table I summarizes the algorithms evaluated. We use

the GM-M algorithm as a baseline because it produces the

lowest maximum node degree of all known algorithms that

run in polynomial time. To be precise, we are using a faster

implementation of the GM-M algorithm described in [26] both

for baseline GM-M and as a building block for DCB-M and

DCBR-M. This faster implementation produces exactly the

same overlay as the original one in [8] at a lower runtime cost

by manipulating data structures more efficiently. Our divide-

and-conquer design is orthogonal to the data structures used

in the algorithm: Our faster version still has prohibitively high

running time without divide-and-conquer. In fact, the speedup

of DCBR-M compared to GM-M would have been even more

significant for the slower, original GM-M implementation.

However, using a faster implementation allows us to run

comparative experiments on a larger scale.

In the experiments, we use the following ranges for the

input instances: |V | ∈ [1 000, 8 000] and |T | ∈ [100, 1 000].
We define the average node subscription size, minimum sub-

scription size, and the maximum subscription size as follows:

|Tv| =
∑

v∈V
|Tv|

|V | , |Tv|min = minv∈V {|Tv|}, |Tv|max =

maxv∈V {|Tv|}. We used |V | = 4000, |T | = 200, and

|Tv| = 50 (with |Tv|min = 10, |Tv|max = 90) to generate the

input workloads for most of the experiments unless specified

otherwise. Each topic ti ∈ T is associated with probability

qi,
∑

i qi = 1, so that each node subscribes to ti with a

probability qi. The value of qi is distributed according to

either a uniform, a Zipf (with α = 2.0), or an exponen-

tial distribution. According to [21], these distributions are

representative of actual workloads used in industrial pub/sub

systems today. The Zipf distribution is chosen because [3]

shows it faithfully describes the feed popularity distribution

in RSS. The exponential distribution is used by stock-market

monitoring engines in [28] for the study of stock popularity

in the New York Stock Exchange (NYSE). The η, p, and λ
parameters are selected as described in Section V.
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Fig. 7. DCBR-M as |V | increases
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Fig. 8. DCBR-M as |T | increases
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Fig. 9. DCBR-M as |Tv | increases

A. Partitioning for Lightweight Nodes

TABLE II
RANDOM PARTITIONING UNDER EXPONENTIAL DISTRIBUTION

mean min max variance

DDCBR 10.798 9 13 0.468
DDCB 10.793 9 13 0.461
DGMM 8.4425 7 12 0.348
dDCBR 4.499 4.394 4.586 0.00122
dDCB 4.499 4.392 4.59 0.00124
dGMM 3.93 3.86 4.02 0.000747

TDCBR/TGMM 0.130 0.111 0.161 0.0000678
TDCB/TGMM 0.833 0.787 0.883 0.000225
|R|/|L| 0.0748 0.0438 0.0977 0.0000891

a) Random partitioning for lightweight nodes: We first

evaluate the effects of random partitioning of lightweight

nodes for the DCB-M and DCBR-M algorithms. We run the

algorithm 400 times for the same settings (namely, the default

experimental settings discussed above except |V | = 1000,

under three different distributions) so that the only difference

between different runs is due to the random node interest

generation according to the given distribution parameters and

due to random node partitioning. The statistics pertaining to

maximum node degree, average node degree, running time

ratio, and the ratio of nodes selected as rep-nodes are reported

in Table II. As the table illustrates, under the exponential

distribution, all the values are quite stable with negligible

variance across different experiments; and the variance is even

more insignificant under less skewed distributions. Besides,

the results validate our assumption that |R| ≪ |L| (with

λ = 3). We conclude that when the number p of partitions

is reasonable, random partitioning of lightweight nodes is an

efficient and robust way to implement the divide phase of

DCBR-M. Furthermore, it results in small rep-sets, which is

vital to the performance of the DCBR-M algorithm.

b) Impact of p: Given an instance I(V, T, Int) where

|V | = 1000, DCBR-M and DCB-M are executed with all

possible p values ranging from 1 to |L|. Fig. 4 shows that

under different values of p, TCODCBR and TCODCB have

similar maximum and average node degrees, which are slightly

higher than those of TCOGMM. However, DCBR-M runs

substantially faster than DCB-M when p is set appropriately.
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We already know that DCBR-M and DCB-M exhibit identi-

cal behavior to GM-M when p = |L|. Fig. 4 shows that as the

number of partitions p grows from 1 to |L|, DDCBR(≈ DDCB)
first increases gradually and then it starts to decrease until it

becomes equal to DGM-M. Note that the DDCBR never moves

far from the horizon line of DGMM: It is always smaller than

6.5. It is less than 2.8 for the value of p that minimizes TDCBR.

While TDCB stays close to TGMM for all values of p, TDCBR

first slides down sharply and then climbs up as p increases.

The range of p values for which this phenomenon occurs is

small and relatively close to 0. (It touches the lowest point

when p is around 10.) Furthermore, the TDCBR/TGMM ratio

follows the same trend as pn-ratio for DCBR-M, which is

compatible with our discussion of choosing p in Section V.

B. Impact of Coverage Factor

Here, we explored the impact of λ on the output and

performance of the DCBR-M algorithm. Given an input

I(V, T, Int) where |V | = 2000 and |T | ∈ [500, 1000], the

DCBR-M algorithm is evaluated for four different values of

the coverage factor (λ = 1, 2, 3, 4.) As Fig. 5 shows, under

uniform distribution, as λ increases, DDCBR decreases. The

differences in maximum node degrees also decrease with suc-

cessive coverage factors, i.e., DDCBR|λ=k−1 − DDCBR|λ=k >
DDCBR|λ=k − DDCBR|λ=k+1. More specifically, compared to

DDCBR|λ=2 − DDCBR|λ=3 ≈ 0.71 on average, DDCBR|λ=1 −
DDCBR|λ=2 is noticeable, which could be as much as ≥ 3
for most cases. When λ ≥ 3, the difference is insignificant

(≤ 0.32 on average). Meanwhile, under all coverage factors

that were tested, DCBR-M runs remarkably faster as compared

to GM-M (TDCBR ≤ 3%TGMM on average). Also, TDCBR

slightly increases as λ increases, because pn-ratio increases

as a result. However, differences among the running time cost

for different coverage factors are insignificant:
TDCBR|λ=4

TGMM

−

TDCBR|λ=1

TGMM

≤ 0.69% on average.

This experiment confirms the validity of choosing a rela-

tively small integer as coverage factor in Section V, both in

terms of node degree and running time cost.

C. Effects Under Different Distributions

We now consider DCBR-M’s behavior under different in-

put instances. We first provide an overview of the overall

DCBR-M performance under different typical distributions,

and then we analyze how DCBR-M is affected by various

aspects of the input.

Fig. 6 depicts that under different distributions, DCBR-M
produces high-quality TCOs in terms of maximum and average

node degrees, which are slightly higher than DGMM and

dGMM, respectively. However, the differences are insignificant:

DDCBR −DGMM 6 2.0, dDCBR − dGMM 6 0.70 on average.

Although DCBR-M and GM-M produce quite close maxi-

mum and average node degrees, DCBR-M runs considerably

faster than GM-M: TDCBR ≤ 4.0% ·TGMM on average. As the

number of nodes increases, DDCBR and dGMM remain steadily

low while the running time ratio TDCBR/TGMM decreases

considerably. This further attests to DCBR-M’s scalability

with respect to the number of nodes in the network.

The maximum node degrees tend to be a bit more fluctuating

under Zipf and exponential distributions compared to those

under the uniform distribution. This could be explained by

the slightly higher variance under skewed distributions, as

presented in Table II. Although skewed distributions are more

sensitive to the variations in the input, the maximum and

average node degrees always stay low, even in the worst cases.

D. Impact of the number of nodes

We now demonstrate DCBR-M’s scalability with respect to

different input parameters. In the rest of the section, while

we report on results and analysis for all distributions in the

text, we only show figures for the uniform topic popularity

distribution due to space limit. See [26] for additional results.

Fig 7 depicts the comparison between DCBR-M, DCB-M
and GM-M as the number of nodes increases where |T | =
100. The figure shows that DCBR-M and DCB-M output sim-

ilar TCOs with regard to maximum and average node degrees,

but DCBR-M runs considerably faster. Under the uniform

distribution, for example, TDCBR is on average 4.79% of TGMM

while TDCB is as much as 75.7% of TGMM. Additionally,

DCBR-M gains more speedup with the increase in the number

of nodes compared to the other algorithm.

E. Impact of the number of topics

Fig. 8 depicts how DCBR-M and DCB-M perform com-

pared to GM-M when we vary the number of topics. As the

figure shows, under the uniform distribution, the maximum

and average node degrees of all three algorithms increase

for a higher number of topics. This is because increasing

the number of topics leads to reduced correlation among

subscriptions. However, the increase is slow paced and the

difference DDCBR − DGMM remains insignificant: 3.51 for

the uniform, 4.46 for the Zipf, and 3.46 for the exponential

distribution on average.

The running time ratio of DCBR-M to GM-M slightly

increases as the number of topics increases, yet this effect

is insignificant: TDCBR is less than 3.8% of TGMM on average.

F. Impact of the average subscription size

Fig. 9 depicts how the node subscription size affects the

DCBR-M and DCB-M algorithms. We set |V | = 1000, |T | =
400, and |Tv| varies from 50 to 150.

The figure shows that under the uniform distribution,

DCBR-M and DCB-M produces quite close TCOs in terms of

both maximum and average node degrees. As the subscription

size increases, DDCBR and DGMM decrease, and the difference

of (DDCBR −DGMM) shrinks. dDCBR follows the same trend.

This decrease occurs because the growth of |Tv| causes

increased correlation across the subscriptions. Upon bigger

correlation, an edge addition to the overlay reduces a higher

number of topic-connected components on average because

the nodes share more comment interests. Therefore, a smaller

number of edge additions are required before the overlay

becomes topic-connected.
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The ratio of TDCBR to TGMM also decreases with the

increase of |Tv|. In both algorithms, an edge addition causes a

higher number of updates to topic-connected components for

bigger |Tv| (Lines 8- 9 in Algorithm 2). Yet, this effect has

less influence on TDCBR compared to TGMM since each update

in DCBR-M affects a smaller portion of edges. Unlike TDCBR,

however, TDCB does not gain significant speedup.

G. Comparison with Ring-Per-Topic
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Fig. 10. DCBR-M vs. GM-M vs. RingPT

Finally, we compare the maximum and average node de-

grees produced by DCBR-M GM-M and RingPT. RingPT
is an algorithm that mimics the common practice of building

a separate overlay for each topic (usually a tree but we use

a ring that has the same average node degree). According to

RingPT, all the nodes interested in the same topic form a ring

for that topic, after which rings for different topics are merged

into a single overlay. |T | is set to 100 in this experiment.

As Fig. 10 shows, DDCBR and DGMM are quite close (the

average difference is 1.22), but the maximum node degree of

RingPT exceeds DDCBR by a factor of approximately 30. This

demonstrates the general significance of overlay construction

algorithms for pub/sub.

VII. CONCLUSIONS

This paper focuses on a number of design objectives for the

MinMax-TCO problem that are central to creating a practical

solution. We have designed the DCBR-M algorithm which

is capable of constructing a low fan-out TCO, while being

significantly more efficient than previously known solutions.

Numerical techniques can be employed to effectively obtain

a good combination of parameters which adapts to various

inputs and guarantees the output and the performance of

the algorithm. The algorithm is thoroughly examined via a

comprehensive experimental analysis, which demonstrates the

scalability of DCBR-M under different distributions as the

number of nodes, the number of topics, and the subscription

size increase.
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