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Abstract. The service-oriented architecture (SOA) is an emerging soft-
ware engineering paradigm for developing distributed enterprise appli-
cations. In this paradigm, Web services are encapsulated and published
as black-box components accessible to service consumers following the
principles of component-based design. This however restricts the flexibil-
ity and adaptability of Web services to react to changing requirements,
which are commonplace today, especially in the emerging smart Internet
and smart interactions domain. In this chapter, we propose a grey-box
approach to compose and evolve Web services to increase their flexibil-
ity and adaptability. By exposing the services’ internal state changes at
runtime as events, our approach allows services involved in service com-
positions to share and consume events from partner services, and make
use of these events to evolve and adapt their behavior. This approach is
illustrated in two case studies.

1 Introduction

The service-oriented architecture (SOA) is a widely adopted software engineer-
ing paradigm to manage the complexity of software development for distributed
enterprise applications. In this paradigm, service providers develop reusable soft-
ware components, publish them as Web services, and register them in service reg-
istries. By composing selected services from service registries, service consumers
can quickly develop collaborative applications across distributed, heterogeneous
and autonomous organizations.

Traditional service composition approaches inherit the principles of component-
based design and treat Web services as black-box components. These principles
hide the implementation details of services and encapsulate their functionality in
service interfaces (e.g., WSDL and WSCI [28] etc.). In this way, the complexity
of maintaining and interoperating services in service-oriented applications is re-
duced, and the business concerns of service providers are protected (i.e., service
implementations are not revealed.)

However, services are different from components, in the sense that a service
usually describes a partial behavior whereas a component describes a whole be-
havior [5]. With respect to an SOA environment, services are usually developed
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independently by different service providers to realize some partial enterprise
application functionality. Also, often participating services are executed and
maintained in different heterogeneous and autonomous organizations. There-
fore, services in a service composition usually have little knowledge about their
partner services except a restricted view via the partners’ statically exposed ser-
vice interfaces. All runtime interactions are based on these statically exposed
and restricted interfaces, which may not be able to handle unexpected scenar-
ios at runtime. As a result, these black-box solutions are inadequate for SOA
applications to flexibly react and adapt to changing application domain require-
ments. Applications in emerging domains such as the newly developing smart
Internet, smart interactions, and Web 2.0 spaces are especially prone to suffer
from lack of flexibility and adaptability due to the ever changing standards and
new specifications that drive these rapidly developing domains.

For example, in a healthcare application network composed of black-box ser-
vices, the interactions among hospital services and pharmacy services strictly
adhere to their statically exposed service interfaces (e.g., the hospital services
send the electronic prescriptions to the pharmacy services). During their inter-
actions, the hospital services have no idea of the internal execution state of the
pharmacy services (e.g., what kinds of medication are in short supply). Simi-
larly, the pharmacy services know nothing about the internal runtime state of
the hospital services (e.g., the number of patients registered by the hospital ser-
vices and what the kinds of medical conditions diagnosed are). The hospital
services and the pharmacy services may collaborate to work well under normal
operational conditions; that is without the knowledge of their partners’ runtime
execution state. However, such an application lacks the flexibility to quickly
adapt to changing requirements. For instance, when a flu outbreaks, the num-
ber of patients would increase dramatically, but the pharmacy services may not
expect such a scenario at design time and are unable to detect and handle such
a scenario at runtime. As a result, the pharmacy services are unable to react
more smartly by timely and pro-actively provisioning more drugs via their own
suppliers.

To enable applications to react to changing requirements, service providers
may need to evolve the services in a service composition. For instance, both
hospital services and pharmacy services may be re-designed and re-encapsulated
to extend their original interfaces with additional query functionalities. Then
new interactions are developed based on these extended interfaces to cover the
changing requirements (e.g., the pharmacy services can periodically retrieve the
statistics on patients and update their inventory levels accordingly). However,
such a solution may be less efficient to keep up with the frequently changing
requirements because service providers may need to sit down and negotiate their
new service interfaces before they start to evolve and redeploy their services, since
they have little knowledge about their partner services. Moreover, this approach
may also reduce the reusability of Web services because the extension of the
interface for a service in one application may make the service unable to work
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in another application with differently changing requirements (which may need
an altogether different service interface).

The difficulties for black-box services to efficiently handle changing require-
ments suggest to provide services more information about their partner services
besides their statically exposed interfaces. On the other hand, the implementa-
tion details of services should be hidden to protect the business interests of ser-
vice providers. These observations inspire us to go beyond black-box component-
based composition approaches to explore additional runtime information from
services without revealing their implementation details. In this chapter, we pro-
pose a novel grey-box approach to compose Web services and evolve them dy-
namically. Our approach encapsulates the internal state changes of services as
events. For example, the hospital services may raise an event whenever the num-
ber of patients (for each type of disease) registered with the hospital services on
a daily basis changes. Such events can be exposed to partner services such that
these services can make use of the events to evolve and adapt their behavior to
react to changing requirements. For instance, if the number of patients treated
for certain diseases increases dramatically, the pharmacy services will be notified
of these events. The pharmacy services will then react to the events and adapt to
increase the inventory levels for specific medication used in the treatment of the
disease in advance so that the response time to supply medication in response
to the outbreak of the disease is shortened.

The advantage of this approach is its flexibility and ability to evolve and
adapt services to react to changing requirements quickly. Services need not be
re-encapsulated and re-deployed every time some domain requirement changes.
Instead, services can keep their service interfaces unchanged and simply make use
of events exposed from partner services to evolve and adapt their behavior. Such
event-driven evolution makes the services and their interactions smarter, that is,
our approach increases the flexibility and adaptability of services and reduces the
services’ response time as a result of changing application domain requirements.
Moreover, a service can customize the encapsulation and exposure of events for
different service compositions it participates in. In this way, the reusability of
the service is honored, at least to a large extent.

The rest of this chapter is organized as follows: Section 2 introduces our solu-
tion methodology. Section 3 presents two case studies based on real-life examples
to illustrate our approach. Section 4 analyzes the state of the art in this area.
Section 5 summarizes the work, extrapolates the potential impact of this work,
and presents further research questions.

2 A Grey-box Framework for Web Service Composition

2.1 Overview

In our model, we view an event as a change in state [18]. A state of a service is
defined as a snapshot of its execution at runtime (e.g., the number of patients
registered today). The execution of a service can be seen as a series of transitions
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Fig. 1. Conceptual EDSOA model.

among its states. The transition from one state to another is denoted as a state
change. For example, the hospital service updates its state –that is, the number
of patients registered today– whenever a new patient is registered. Such states
are usually invisible from outside the service, and thus referred to as internal
states. In our approach, to allow collaborating partner services to become aware
of each others’ internal state changes, services convey internal state changes as
events for different service compositions the services participate in and publish
events to collaborating partners. By subscribing to events of interest, collaborat-
ing partner services may trigger corresponding adaptations (e.g., the pharmacy
service increases its inventory level for certain medications) on being notified
of such events. In this chapter, we refer to such adaptations as event-driven
adaptations.

In this model, services in a service composition can not only interact with each
other through the invocation of their exposed functions (via sending messages to
their partners and receiving messages from their partners), but can also publish
events to their partners and make adaptations on being notified of events from
their partners. Note that events are different from messages. An event is raised
to convey a service’s internal state change. A service may publish events to other
services, but it has neither an idea about who will subscribe to and therefore
be notified of its events, nor how these events are handled by other services
(e.g., whether they are discarded or trigger event-driven adaptations inside other
services). In contrast, a message is a part of a communication protocol among
services, which mandates and synchronizes the behavior of the service sending
the message and the service receiving the message, regardless of a synchronous
or asynchronous underlying mechanism to transfer messages. Messages must be
received and handled in a certain order by a service. A service may be blocked
to wait for a message from another service, but a service is not blocked to wait
for an event since services are notified of events, which they may consume by
triggering adaptations or simply discard.



5

service2 service3

service1

Behavior/protocol interface

Event interface

Message-based Interaction

Event propagation

AbstractionAggregation

C
o

m
p

o
site

 se
rv

ice

Fig. 2. Grey-Box composition of services.

To differentiate from traditional SOA service compositions that support only
message-based interactions, we use the term Event-Driven Service-Oriented Ar-
chitecture (EDSOA1 for short) to describe the type of service compositions that
support both message-based interaction and event propagation among services
and corresponding event-driven adaptations. Fig. 1 illustrates the conceptual
EDSOA model. In EDSOA, services are published, discovered and composed in
the same way as in SOA. However, in addition to SOA, EDSOA services in a
service composition may also publish events to and consume events from their
partners.

The novel aspects of our work lie in that services are composed not only based
on their statically exposed behavior interfaces, but also interact through events
from their event interfaces. This additional dimension for service compositions
increases the flexibility and adaptability of SOA applications. To a large extend,
our approach also respects the reusability of services.

2.2 Grey-Box Composition of Services

One practical concern of EDSOA is that the well-established encapsulation and
modular development principles of Web services should not be breached by the
integration of event-driven techniques, since events may be propagated across
the boundary of services in a service composition in arbitrary ways. Therefore,
it is desirable to encapsulate internal state changes of Web services as events and
abstract the exchange of events among services into service interfaces as well.
In our model, as illustrated in Fig. 2, a service has two interfaces: a behavior
interface and an event interface. The behavior interface is the traditional Web
service interface (e.g., WSDL and WSCI [28]), which describes the functionality
of the service and its communication protocols. The event interface of a service

1 Note that the term “EDSOA” used in this chapter is different from the one proposed
in SOA 2.0 [29]. The difference is explained in Section 4.
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on the other hand describes the types of events the service wants to expose and
the types of events the service consumes from its partners.

A service composition in EDSOA concerns not only the interactions of ser-
vices through behavior interfaces, but also determines the event advertisements
and event subscriptions among services (defined below). The service interac-
tions based on behavior interfaces are the same as their counterparts in SOA
applications. However, the event propagation among services requires additional
mechanisms. In our work, we adopt the content-based pub/sub model for event
propagation [6] (WS-Eventing [28] also adopts a pub/sub model). In this model,
event producers (e.g., services or software modules) advertise the types of events
they will generate (also referred to as event advertisements); event consumers
(e.g., services or software modules) subscribe to the types of events they are in-
terested in (also referred to as event subscriptions). Both, event advertisements
and event subscriptions can be expressed as a set of event types in event inter-
faces. At runtime, each event is propagated from its producer to all subscribers
whose subscriptions are matched by the event’s content.

Services can be composed hierarchically and incrementally to form composite
services. In EDSOA, a composite service also needs to provide an event inter-
face in addition to its behavior interface, as illustrated in Fig. 2. The composite
service aggregates events from the events exposed from the event interfaces of
its involved services, and exposes the aggregated events in its event interface.
Similarly, the composite service may subscribe to events from its partner services
in its event interface. These subscribed events will be decomposed into different
events and propagated to its involved services. How exposed events are aggre-
gated from its involved services and how subscribed events are decomposed and
propagated to its involved services are determined by the business logic of the
composite service.

The advantage of this approach is that services need not propagate low-level
events generated inside the services to all partner services. Instead, they can
customize and aggregate the low-level events into more meaningful high-level
events. This not only reduces the traffic due to event propagation, but also helps
to hide the implementation details of a service.

2.3 Event-Driven Service Evolution

With the support of event exposure and event propagation, services can become
aware of their partner services’ runtime execution states. Services can make use
of these events to evolve and adapt their behavior dynamically. Fig. 3 illustrates
the implementation model of event-driven service evolution.

In the model, a service is equipped with queues to store subscribed events
from its partner services. To evolve a service and adapt its behavior dynamically,
event-condition-action (ECA [1]) rules can be added to the rule repository of a
service dynamically. Whenever the service is notified of an event matching its
subscriptions, the event is put into the tail of a queue. The service can then
handle the events in its queues by invoking the matching ECA rules to handle
the events. For example, the pharmacy services may evolve to become aware of
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Fig. 3. Event-driven service evolution model.

the number of patients reported by the hospital services by subscribing to the
hospital services’ events, and add ECA rules to handle the events (i.e., increasing
the inventory levels for specific medication whenever the number of patients
increase dramatically).

The advantage of this approach is that it increases the flexibility and adapt-
ability of service-oriented applications, because ECA rules can be added to the
services’ repository dynamically. Moreover, the reusability of services is respected
since services need not be re-designed and re-deployed; their behavior interface
remains unchanged.

2.4 Implementation

As a proof of concepts, we implemented a prototype of the proposed grey-box
framework. In this prototype implementation, we extended BPEL 2.0 [21] to
support event exposure and event-driven adaptation for business processes. To
support event interfaces, each BPEL processes is attached separated XML docu-
ments defined by our event interface language called Event Interface Description
Language (EIDL for short). Fig. 4 describes the schema of the event interface
description language.

Fig. 4. Event interface description language schema.
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In BPEL, users can define event handlers to handle two types of events
(receiving a message or time-out alarm). We can define event handlers in BPEL
to handle events from partner services at runtime. However, this implementation
requires redeploying a BPEL process whenever a new ECA rule is added to this
process. Moreover, different instances of a BPEL process may need different rules
at runtime. Therefore, event handlers in our prototype are defined in separate
documents attached to a BPEL process and encapsulated as Web services too.
In this way, whenever a new ECA rule is added for a particular instance of a
BPEL process, only the corresponding new event handler is deployed as a Web
service, and the BPEL process and its other instances are not affected. As a
result, ECA rules can be added or removed dynamically.

Our prototype implementation is built based on the open-source project
called Apache ODE (Orchestration Director Engine [2]). Apache ODE is a BPEL
engine for orchestrating BPEL processes. In order to support event exposure for
BPEL processes, we implemented an event listener and hooked it into the Apache
ODE engine. The event listener is responsible for monitoring the events gener-
ated during the execution of BPEL processes, and exposing the events defined
in the event interfaces and filtering out the others. To propagate events to the
partner services, we designed a pub/sub interface that can be implemented by
existing pub/sub systems (e.g., Padres [26]). When an event interface is deployed,
the exposed events and subscribed events defined in the event interface are con-
verted to corresponding advertisements and subscriptions. In this way, services
can publish events to and consume events from their partner services through the
underlying pub/sub system at runtime. To support event-driven adaptation, we
designed a rule engine and an adapter for the underlying pub/sub system. This
adapter is notified of events from partner services and the rule engine evaluates
whether an ECA rule can be triggered for every incoming event. If a rule can
be triggered, the rule engine will invoke the corresponding event handler, which
is deployed as a Web service. The architecture of the prototype is illustrated in
Fig. 5.

In the next section, we conduct two case studies to investigate and evaluate
the advantage of our proposal and compare it to existing black-box solutions.

3 Case Studies

In this section, we present two case studies to illustrate our approach. In the case
studies, we compare our solution to existing work to illustrate the flexibility of
our approach.

3.1 Healthcare Application

This example is from a healthcare application, as illustrated in Fig. 6(a), where
the public health center service (PHC for short) collaborates with hospital ser-
vices to provide healthcare services for patients.
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Fig. 5. Prototype architecture.

Fig. 6. Healthcare application scenario.

Let us consider a collaboration scenario in this application, as shown in
Fig. 6(b). Hospital 1 sends a request message (represented as action b1) to PHC
to transfer a patient to another hospital with more adequate treatment proce-
dures. On receiving the message (a1), the PHC service finds that Hospital 2
satisfies the admission requirements. It then sends a patient transfer request
message (a2) to Hospital 2. If Hospital 2 agrees to receive this patient, it sends
a transfer permit message to PHC (c2), and prepares for the reception of the
patient (c3, e.g., schedules the ambulance). On receiving the permit forwarded
from PHC (a4), Hospital 1 does some preparation (b3, e.g., physical checkup for
the patient) and then sends a transfer confirmation to Hospital 2 (b4). On receiv-
ing the transfer confirmation, Hospital 2 will arrange an ambulance to transfer
the patient (c5).
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Fig. 7. Sample black-box solution.

Note that this service-oriented application works well for the given sce-
nario. To provide more qualified healthcare services for patients, new appli-
cation requirements are imposed by the public health regulator, mandating
healthcare services to react to emergency situation quickly (based on a spec-
ified service level). For example, in case of a flu outbreak, the hospital services
should react quickly to quarantine the patients to prevent them from being
cross-contaminated. With respect to above patient transferring scenario, if a flu
outbreak is reported in the area of Hospital 2, Hospital 1 should not transfer the
patient to Hospital 2. Instead, Hospital 1 may request remote therapy support
from Hospital 2 to avoid the patient being cross-contaminated.

To address these new requirements, the services in this application need to be
re-designed, re-encapsulated and re-deployed using traditional approaches. For
example, Fig. 7 illustrates an implementation of these services to cover these
new requirements. In order to detect the outbreak of a flu, the public health
center service will monitor and periodically query the number of patients and the
corresponding types of disease in the hospital services. Therefore, these services
have to be re-designed and re-encapsulated to provide new operators (i.e., b1,
b2, c1 and c2) in the new interfaces to support such query functionality, as
illustrated in Fig. 7(a). Similarly, when Hospital 1 wants to transfer a patient to
Hospital 2, new operators (i.e., a5 and a6) are needed in the public health center
service for Hospital 1 to query whether it is risky (i.e., whether there is a flu
outbreak in Hospital 2) to transfer the patient. If so, both hospital services use
the re-designed functionality to provide remote therapy support for the patient,
as illustrated in Fig. 7(b).

From the above sample implementation, we can observe that traditional
black-box service composition solutions lack the flexibility and adaptability to
handle new application requirements, because the services need to be re-designed,
re-encapsulated and re-deployed. In the rapidly evolving smart Internet environ-
ments of today, the requirements of an SOA application may change frequently.
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Fig. 8. Our solution.

Black-box solutions are unable to handle the changing requirement quickly. As
a result, the quality of the services (e.g., availability of the services) is compro-
mised. Moreover, since the service behavior interfaces also need to be re-designed,
the reusability of the services is also compromised.

In contrast, our grey-box solution can address these changing requirements
in a flexible way. In our solution, services expose some of their internal state
changes as events and publish these events to their partner services. For example,
as illustrated in Fig. 8(a), whenever the number of flu patients registered per
day changes, the hospital service will publish an event to its partners, specifying
the current number of flu patients registered per day. By subscribing to such
events, if the PHC service is notified of an event indicating more than 50 flu
patients per day (the number 50 is determined from historic data about flu
outbreaks) are registered, the PHC service changes its flu alarm state from safe
(i.e., Alarm level ≤ 3) to risky (i.e., Alarm level > 3). Such an internal state
change of the PHC service is defined as another event, a flu alarm event, and
published to hospital services. On being notified of the flu alarm event, hospitals
may adapt their regular flu treatment procedure (e.g., separate flu patients from
others). For example, as illustrated in Fig. 8, during the preparation for patient
transfer (b3), if Hospital 1 is notified of an event e2 from the PHC indicating
that a serious flu outbreak is detected in Hospital 2, Hospital 1 will adapt its
behavior (i.e., from b3 to b′3) to request support from Hospital 2 (b′4) instead of
transferring the patient to Hospital 2 to protect the patient from being cross-
contaminated. Similarly, Hospital 2 also adapts its behavior to provide remote
therapy services for Hospital 1 on being notified of event e2.

Compared to traditional black-box solutions, the following advantages are
observed in our grey-box solution: First, it increases the flexibility of the appli-
cation, because the services need not be re-designed and re-deployed. Instead,
only some events are defined and exposed to their partner services. In this way,
event-driven adaptation rules (ECA rules) can be easily added to the applica-
tion to handle new requirements. If the requirements change, services may only



12

Fig. 9. E-Commerce application scenario.

need to expose different events and change the ECA rules. Next, the reusability
of services are respected, because the behavior interface of some services (e.g.,
public health center service) remains unchanged.

3.2 E-Commerce Application

This example is from an e-commerce application, where a customer with a mobile
device travels to different places. The customer uses shopping services provided
by merchants and pays by credit card. Fig. 9 illustrates a typical scenario. The
customer uses a credit card to pay the bill from the merchants, who then transfer
the payment request to the bank. On receiving the request, the bank will check
the authenticity of the card holder and approve the payment if it is an autho-
rized transaction. Sometimes, the bank may call the customer to confirm the
transaction before approving the payment if the amount paid in the transaction
is larger than a specified threshold.

To provide better services for customers in such a scenario, the bank may
want to improve the security of its credit card services on the one hand, and pro-
vide more flexible and smarter interactions with customers on the other hand.
Let us image a scenario where the customer travels to another country, and
shops with a credit card. Since the payment is from another country, to improve
the security of the credit card services and protect the interests of card holders,
the bank may call the customer to confirm the transaction before approving the
payment. The customer whose cellphone is operating under expensive roaming
charges may decide not to take the call and, thus, the transaction is declined,
with all the negative consequences such a situation entails. A more flexible and
smarter interactions are required to resolve this dilemma. For example, if the
customer travels to another country, the bank may choose to send a short mes-
sage to the customer instead of dispatching a phone call. Similarly, if security
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concerns about the credit card are raised during the weekend or a holiday, the
bank may contact the customer via his cellphone instead of his office phone.

As explained in Section 3.1, traditional black-box approaches to enrich orig-
inal services with such new functionality require refactoring or re-designing the
services and re-deploying them. Such solutions lack the flexibility since whenever
a new functionality is added, the services need to be re-factored or re-designed
and re-deployed. This also compromises the availability of the services during
the service evolution.

In the rest of this section, we illustrate our solution based on event exposure
and event-driven adaptation. We show that our solution increases the flexibility
and adaptability of the services for such scenarios. To implement the above
described new functionality, the following events are exposed by these services:

1. elocation. In order to increase the security of the credit card services, the
customer may agree to expose and publish this location change event to
credit card services whenever he travels to another country. This event in-
dicates the current location of the customer. This can be done via the GPS
functionality running on the customer’s mobile device.

2. eamount and emerchantLocation. These events are raised from the payment
service that handles the payment transaction. These events are exposed and
propagated to the card holder authenticity checking services which can make
use of these events to estimate the risk of the transaction.

3. ealarm. This event is raised from the authenticity services that evaluate the
risk of a payment transaction. Whenever the services detect some unusual
events, this event is raised and propagated to the credit card service, whose
customer services will contact the card holder to confirm the transaction
before approving it. Note that this event is a composite event, in the sense
that it is composed of other events. For example, a payment from a location
different from the current (or home) location of the card holder with an
amount larger than a threshold may indicate a potential risk that the card
is stolen. Therefore, this event can be defined as eamount.value > threshold∧
emerchantLocation 6= currentlocationcustomer. Other abnormal scenarios can
be defined in a similar way.

To propagate these events, the following event interfaces are defined for the
corresponding services:

1. EIcustomer. This event interface is for the customer, whose mobile device
service exposes event elocation through the event interface. Other possible
events may be exposed in the event interface in the future (e.g., the current
state of customer: in meeting, traveling, sleeping etc.)

2. EIcreditcardservice. This is the event interface for the composite service: credit
card service. The event interface subscribes to the event elocation from cus-
tomers.

3. EIpayment. This event interface is for the payment services, which expose
these two events eamount and emerchantLocation.
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4. EIauthority. This event interface is for the authentication services. In this
event interface, two events (i.e., eamount and emerchantLocation) are sub-
scribed to from partner services (e.g., payment services). The authority ser-
vices also expose the event ealarm in this event interface.

5. EIcustomerservice. The customer service consumes the event ealarm from the
authentication services through this event interface.

Based on these exposed events and event interfaces, event-driven adaption
rules can be defined to implement the new functionality, that is, increase the
security and interact with customers in a flexible and smart way. Some sample
rules are illustrated as follows:

1. ECA-Rule: On being notified of elocation, set currentlocationcustomer =
elocation.value.
This rule is defined for the credit card service. Its intuitive meaning is to
update the current location of customers.

2. ECA-Rule: On being notified of ealarm, if currentlocationcustomer =
locationregister, call customer; else, send an SMS message.
This rule is defined for the customer service. The intuitive meaning is to
provide a flexible and smarter way to interact with customers, that is, if the
customer is traveling, then send an SMS message instead of calling him.

3. ECA-Rule: On being notified of eamount and emerchantLocation, such that
eamount.value > threshold ∧ emerchantLocation 6=currentlocationcustomer, then
raise event ealarm.
This rule is defined for the authentication services to detect abnormal situ-
ations. Other rules can be defined to detect abnormal situations in a similar
way.

In this case study, we observed the following advantages of our approach
compared to existing black-box solutions: First, by making use of exposed events
from partner services, it is easy to define ECA rules to support flexible and smart
interactions between customers and the credit card service at low cost. Second,
our solution is easy to maintain and evolve for new application requirements. For
example, if a new security requirement is imposed, the services may only need
to expose additional events and define new ECA rules. This exempts services
from the burden to be re-designed and re-deployed. It also simplifies the design
and composition of services by providing simple behavior interfaces to capture
the basic business logic, leaving the frequently changing parts to be realized by
event-driven adaptation rules.

3.3 Summary and Lessons Learned

In this section, we illustrate our proposal using two case studies. In the stud-
ies, new requirements are added to existing service-oriented applications. We
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observed that existing black-box solutions lack the flexibility and adaptability
in both studies. This is because services need to be re-designed and re-deployed
whenever the requirements change. Such solutions also compromise the avail-
ability and reusability of services. In contrast to black-box solutions, our solu-
tion provides an additional dimension to compose and evolve services through
event exposure and corresponding event-driven adaptation. Such an additional
dimension simplifies the maintenance and evolution of services, because the fre-
quently changing behavior introduced by new requirements can be implemented
by this additional dimension. As a result, services need not be re-designed and
re-deployed whenever the requirement changes. This increases the flexibility and
adaptability of service-oriented applications. Moreover, a service can customize
different event interfaces to different service compositions and keep its behavior
interface unchanged. In this way, the reusability of services is also respected.

In the study, we also learned some lessons from our solution. The additional
dimension for service composition also imposes new challenges for application
development. The increased flexibility and adaptability may introduce more in-
consistency among services in a service composition. Services in a service com-
position may consume events from their partner services and make inconsistent
behavior adaptations. Such inconsistent behavior adaptations may cause seri-
ous deadlock problems for a service composition at runtime which may not be
expected and easily discovered.

For example, in the first case study, as illustrated in Fig. 8, if Hospital 2
does not react to event e2 (or due to out of order event delivery), then the
inconsistent adaptation between Hospital 1 and Hospital 2 will cause a deadlock,
because Hospital 2 is still waiting for the transfer confirmation (i.e., c4) from
Hospital 1, whereas Hospital 1 has adapted to request a remote therapy (i.e.,
b′4) from Hospital 2. As a result, both services are blocked waiting for responses
from each other and thus form a deadlock.

We observed that such inconsistency issue caused by event exposure and
corresponding event-driven adaptation has not been addressed in existing work.
The reason is that existing work exposes only the syntax of events in the event
interfaces, whereas the causality relationships among events and the effects of
corresponding event-driven adaptation are missing. For example, in the indus-
try standard Service Component Architecture (SCA) [22], event interfaces are
proposed to specify event propagation among service components. W3C also pro-
posed the WS-Eventing [28] protocol to standardize the propagation of events
among services. However, the event interfaces in these standards expose only the
format and syntax of events and the underlying event propagation mechanisms,
ignoring how the causality relationships among events and event-driven adap-
tations impact the behavior of services in a service composition. With respect
to the example in Fig. 8, the event interfaces generated by these approaches
describe only the syntax of events e1 and e2. However, the event-driven adap-
tations in services Hospital 1 and Hospital 2 are invisible to each other. As a
result, the aforementioned inconsistency issue cannot be detected based on these
event interfaces.
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These lessons suggest that not only the syntax of events but also their causal-
ity and effects of corresponding event-driven adaptations among services should
be exposed in event interfaces. How to define and how to derive such information
for event interfaces require further research efforts.

4 Related Work

In this section, we review work related to the scope of our research falling in
the areas of reflection, service evolution, event-driven development, and event
processing.

Software Reflection. Reflection [25] is an approach to inspect the internal
state of a system and adapt its behavior dynamically. By providing program-
matic access to the meta-level information about the system, the instructions
of the system can be revised at runtime. Services can be implemented with
reflection-oriented programming to adapt their behavior dynamically. However,
this is impractical for a composite service composed of services from different
organizations, because the exposure of the services’ meta-level information may
reveal proprietary implementation details. Our approach only needs to expose
the internal runtime states of services as events and no meta-level information
or other details about the implementation of services is required and revealed.
The kinds of state changes revealed by events are left under the control of the
service designer.

Service Evolution. The issue of service evolution has been addressed by
many researchers. Casati et al. [7] proposed approaches to modify process de-
scriptions and manage ongoing process instances whose description has been
modified. Aalst and Basten [27] proposed to evolve services based on inheritance
of workflows. A similar approach was proposed by Schrefl et al. [24] to evolve a
class from its supertype class. All these approaches evolve services by extending
or revising their behavior interfaces. Our work complements this work by evolv-
ing services from another dimension leaving the behavior interfaces unchanged.

Event-driven SOA and Event-driven BPM. The concept of “Event-
driven SOA”, also known as SOA 2.0, has been proposed in the community [29].
However, the meaning of this concept is different from the term “EDSOA” pro-
posed in our work. The “Event-driven SOA” concept is proposed from the per-
spective of event-based business process execution and collaboration. The pur-
pose is to define and trigger business applications based on event-driven rules
instead of describing the business logic in a procedural manner. The advantage is
that business applications can be executed dynamically and can react quickly to
changing requirements. However, the approach proposed in our work is to pro-
vide an additional dimension to procedure-based business collaboration based on
event exposure and event-driven adaptation. This additional dimension allows
services to be composed and evolved in a grey-box manner. The purpose is to
increase the flexibility and adaptability of SOA applications.

On the other hand, event-driven business process management has been
widely adopted in enterprise applications due to the needs for increased flexibil-
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ity and adaptability of business processes [8,15,17,18,19,20,23,30]. This requires
effectively integrating business logic with the generation, exposure, propagation,
detection and handling of events in business applications. Frei et al. [13] pro-
posed to use aspect-oriented program (AOP for short) techniques to extract
and expose events from legacy enterprise applications. Developers can make
use of these events for refactoring the legacy applications. In addition, industry
standards like BPEL [21] also support two kinds of events, namely a timeout
alarm and the receiving of a message, which however are local to a BPEL pro-
cess and are not propagated to other partners. The notification mechanism in
BPEL is similar to event notification, but it is based on messages. BPEL pro-
cesses interact through messages only. In our work, we differentiate message
exchange and event propagation. More general events are supported and they
can be propagated among services to support dynamic service evolution and
behavior adaptation. In the SCA specification [22], events can be propagated
among components, where event propagation is governed by the WS-Eventing
protocol [28]. However, the causal relations between events and the effects of
event-driven adaptation inside a service are not exposed in these interfaces. As a
result, these event interfaces cannot be used to check the compatibility property
of services. In addition, Rapide [18] applies a top-down approach to design event-
driven applications. However, the methodology to compose and evolve services
based on events is not addressed in these approaches.

Interfaces for services and components. In component-based develop-
ment, interfaces are used to abstract the functionality of components and encap-
sulate their access points. The composition of components should conform to the
requirements specified in their interfaces. Different interfaces may specify differ-
ent requirements. For example, Beyer et al. [4] proposed to specify three kinds of
constraints in Web service interfaces, namely signature constraints, consistency
constraints, and protocol constraints. These constraints define the correctness
requirements for syntax level, functionality level and collaboration level of a ser-
vice. Alfaro and Henzinger [9] proposed to describe interfaces as automata to
capture temporal aspects of constraints. Their approach provides a type system
to check the compatibility of interface modules based on game theory. Scalability
is a major concern for compatibility checking based on interface automata. To
solve this problem, Emmi et al. [10] proposed a modular verification approach
based on assume-guarantee rules. However, the effectiveness of this approach
depends on how to derive the appropriate assumption for each model. The event
interface proposed in our work is difference from existing service interfaces. The
difference is that message-styled communication is used to connect service inter-
faces based on message names, whereas the asynchronous content-based pub/sub
event propagation model is adopted for event interfaces in our approach. In ad-
dition, interfaces of components in reactive systems [14] usually include only the
input and output signals of the components, and the effects of the signal han-
dling are left to the behavior description of the component. This is not feasible in
Web services because the implementation of services is usually invisible to oth-
ers. On the other hand, many equivalence relationships between two processes
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are defined in process algebras (e.g., CSP) [3]. These equivalence relationships
can be used to derive interfaces from service implementations under different
equivalence semantics. However, these relationships cannot be applied to de-
rive event interfaces for Web services because they are based on synchronous
message-based communication.

Event Processing Techniques. Currently, many middleware systems have
been proposed to support event processing. Representative ones include content-
based pub/sub systems [6,11,26], which can be used to store and deliver events
from where they are produced to where they are consumed. In addition, some of
these systems may support the processing of complex events (e.g., composite sub-
scriptions [16]). Fiege et al. [12] further proposed to scope pub/sub applications
to increase the flexibility. Our work supports event aggregation and decomposi-
tion for a composite service. More complex event processing can be supported
by integrating new services implementing such complex event processing.

5 Conclusions and Future Work

In this chapter, we proposed a grey-box approach to compose and evolve Web
services. Our approach is based on events specified in event interfaces which
complement the traditional behavior interfaces of services as an additional di-
mension. Events capture the internal state change of a service. The advantage
is that a service can make use of this information to better adapt its behavior
to the internal state changes of its partner services. This increases the flexibil-
ity and adaptability of service-oriented applications to react faster to changing
application requirements. This also honors the reusability of services.

However, the additional dimension for service compositions also imposes new
challenges for application development. The increased flexibility and adaptability
may introduce more inconsistency among services of a composition. Services in
a service composition may consume events from their partner services and make
inconsistent behavior adaptations. Such inconsistent behavior adaptations may
cause serious deadlock problems for a service composition at runtime which
may not be expected and easily discovered. In addition, a subsequent evolution
with new behavior adaption inside a legacy service may also introduce deadlocks
into an originally deadlock-free service composition. Therefore, the detection of
deadlock and the guarantee of deadlock-free evolution of services augmented
with events is an important research question. In particular, the exposure of
events in event interfaces and the kind of information required for this exposure
are also important concerns. We plan to study how to derive some equivalence
relationships to guide the evolution of a service without violating its original
properties.

Another research question pertains to the aggregation and decomposition of
events inside a composite service, especially for a top-down design of a service
composition. This should be reflected in a service composition specification. A
methodology to consider both the behavioral aspects and event aggregation is
needed. Moreover, new approaches are needed to discover and select services
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based on the additional dimension enabled through event exposure and event
propagation. Other research questions such as a service quality-of-service, service
maintainability, and service transactions may need new attention and require
rethinking in sight of event exposure.

In addition, we also plan to utilize the additional information provided by
event exposure to test and debug service compositions. Services in a service
composition are usually tested by using black-box testing approaches due to
the unavailable implementation details of services. Our approach sheds light on
testing service compositions in a grey-box manner, that is, test cases may be de-
signed to cover the service implementation in a more accurate way with the help
of exposed events in the service’s event interface. Moreover, these exposed events
may also be helpful to diagnose faults in a service composition. We plan to study
how to expose events and how to derive test cases to test service composition
based on event exposure.

This work has the potential to impact the way services are developed and
composed. The work opens a door for service developers and service consumers
to rethink services (which have been viewed as black-box components for a long
time) and the way services are composed (usually viewed as nothing new but
a special case of component composition). In our work, a service is no longer a
simple and “dead” black-box component with a statically exposed interface, but
a “live” component that not only exposes static interfaces but also consumes and
exposes dynamic information and dynamically adapts its behavior. The exposure
of additional information as events will be helpful to SOA applications in many
ways, such as contribute to their flexibility, adaptability, evolution, testing, and
debugging and so on. The solutions to the aforementioned research issues may
also encourage some current industry standards (such as WSDL and SCA) to
further integrate events and event-related information into their specifications.
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