
Historic Data Access in Publish/Subscribe

G. Li A. Cheung Sh. Hou S. Hu V. Muthusamy
R. Sherafat A. Wun H.-A. Jacobsen S. Manovski

Middleware System Research Group
University of Toronto, Canada

S. Manovski
Cybermation CA Inc.

Markham, Ontario, CA

ABSTRACT
We develop a content-based publish/subscribe platform, call-
ed PADRES, which is a distributed middleware platform
with features inspired by the requirements of workflow man-
agement and business process execution. These features
constitute original additions to publish/subscribe systems
and include an expressive subscription language, historic,
query-based data access, composite subscription processing,
a rule-based matching and routing mechanism, and the sup-
port for the decentralized execution of service-oriented ap-
plications.

Categories and Subject Descriptors
H.4.1 [Information Systems]: Information Systems Ap-
plications

General Terms
Design, Management, Experimentation

Keywords
publish/subscribe, content-based routing, query routing, com-
posite subscriptions, database

1. INTRODUCTION
The PADRES project [1] aims to create a distributed content-
based publish/subscribe (p/s) system. The project is a col-
laboration between the Middleware System Research Group
at the University of Toronto, CA and Sun Microsystems.

The primary research focus of PADRES is applying and ex-
tending the content-based p/s paradigm to fit the require-
ments of workflow management and business process execu-
tion in a large-scale distributed environment (e.g., hundreds
of nodes, thousands of users) [8]. Specifically, PADRES is
seen as a message-oriented middleware layer for such a sys-
tem, although some non-typical middleware features such
as historic data access are included. A secondary goal of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS ’07, June 20-22, 2007 Toronto, Ontario, Canada
Copyright 2007 ACM 978-1-59593-665-3/07/03...$5.00

PADRES is to seamlessly connect centralized messaging sys-
tems. By providing bindings for various messaging formats,
other messaging systems can be connected as PADRES cli-
ents and can communicate with each other. PADRES, in
effect, can federate disparate messaging systems.

The workflow management context introduces several chal-
lenges in the use of content-based p/s. Several requirements
are not satisfied by traditional content-based p/s systems.
Seamless access to historic data, a powerful subscription lan-
guage and matching engine, highly scalable message routing,
and flexible network topologies are several of the key features
of PADRES needed to meet these requirements.

The PADRES subscription language is based on the tra-
ditional [attribute, operator, value] predicates used in
several existing content-based p/s systems [7, 4, 15, 14].
Each message has a mandatory tuple describing the class

of the message and an arbitrary number of additional tuples
specifying the message content. The class attribute pro-
vides a guaranteed selective predicate similar to the topic
in topic-based p/s systems. The class concept could po-
tentially be extended to a full semantic ontology [17, 18].
This traditional language is augmented by the use of com-
posite subscriptions [13]. Composite subscriptions combine
several atomic subscriptions, and are only matched after all
the contained subscriptions are individually matched. The
matching engine in PADRES is built using a Rete-based
rule engine [9]. The rule engine is a powerful method of
performing complex content-based matching, and naturally
supports composite subscriptions.

Historic data access for content-based p/s systems is the fo-
cus of this demonstration. PADRES, unlike existing content-
based p/s systems, allows the user to subscribe to data pub-
lished in both the future and the past. Accessing both future
and past publications using standard subscription semantics
is a novel and useful approach in the distributed p/s con-
text. Databases, associated with brokers in the network,
store publications as they are published. Later, upon re-
ceiving a request for the historic data, the brokers re-publish
relevant publications from their databases. Publications are
replicated across several databases in order to improve data
availability. Databases can sink a part of or the entire pub-
lication space.

Note that in the content-based p/s paradigm, no direct ad-
dress information of participants is available, so all publi-

80

B1

B2

B3 B4

Advertiser/

Publisher

Subscriber
Subscriber

1) adv [class,=,foo],[attr,>,17]

4) pub [class,foo],[attr,28]

2) sub [class,=,foo],[attr,>,20] 3) sub [class,=,foo],[attr,<,10]

SRT

If sub overlapping Send to

B1[class,=,foo],[attr,>,17]

PRT

If pub overlapping Send to

B2[class,=,foo],[attr,>,20]1)

4)

2)

2)

1)
4)

1)

Figure 1: PADRES Network Architecture

cations and subscriptions must be routed according to their
content. This fact precludes directly querying the distributed
databases for past data. In fact, it is impossible for the client
to know which databases to query. The content-based rout-
ing is the fundamental difference between p/s networks and
traditional IP-routed networks.

In order to provide historic data access, PADRES supports
time-based subscriptions. Time-based subscriptions contain
a time interval (open or closed) that indicates the desired
set of publications. Queries are broken down into future
(traditional p/s) and historic portions, and the historic sub-
scriptions are routed to the appropriate databases.

2. SYSTEM DESCRIPTION
The PADRES system consists of a set of p/s brokers con-
nected by a peer-to-peer overlay network. Clients connect
to brokers using various binding interfaces such as Java Re-
mote Method Invocation (RMI) and Java Messaging Service
(JMS). PADRES is implemented in Java, and uses RMI as
its native transport protocol. There is an administrative
client which allows a user to visualize the network and con-
trol the brokers in the system.

2.1 Network Architecture
The overlay network connecting the brokers is a set of RMI
connections that form the basis for message routing. The
overlay routing data is stored in Overlay Routing Tables
(ORT) on each broker. Message routing in PADRES is
based on the publish-subscribe-advertise model established
by the SIENA project [4]. We assume that publications are
the most common messages, and that advertisements are
the least common.

Advertisements are effectively flooded to all brokers along
the overlay network using the ORT. The set of advertise-
ments seen by a broker are used to construct the Subscrip-
tion Routing Table (SRT) for that broker. The SRT is essen-
tially a list of [advertisement content specification,

last hop] tuples, although it is actually implemented using
a Rete in our rule engine. Clients are required to advertise
before publishing data, but may subscribe at any time.

In order to reduce network traffic and decrease routing table
sizes, brokers merge advertisements before forwarding them.
Advertisements with significant overlap are propagated as a
single, more general advertisement. The PADRES merging

scheme is an extension of the covering concept in SIENA [4],
and is similar to subscription merging in Rebeca [15].

Subscriptions are routed hop by hop according to the SRT
at each broker. The set of subscriptions seen by a broker
are used to construct the Publication Routing Table (PRT)
for that broker. Like the SRT, the PRT is logically a list of
[subscription content specification, last hop] tuples
implemented using a Rete. Subscriptions are merged in the
same manner as advertisements.

Fig. 1 shows the overlay network, SRT and PRT. In this
figure, an advertisement 1) is propagated from B1. Then
a matching subscription 2) enters from B2, and is routed
along the SRT. For instance, 2) overlaps 1) at broker B3,
according to the SRT of B3, it is sent to B1. Subscription
3) does not overlap advertisement 1), so it is not forwarded
by B4. Lastly, publication 4) matching subscription 2) is
routed along the PRT formed by 2) to B2.

The PADRES broker overlay can be either acyclic or cyclic.
A cyclic overlay improves the robustness and failure re-
silience of the messaging substrate by providing alternate
routing paths between subscribers and publishers. In the
cyclic case, publications can be routed to subscribers using
the “best” path, dynamically adapting to network traffic
and failures.

2.2 Broker Architecture
The PADRES brokers are modular software components
built on a set of queues. Each queue represents a unique
message destination, and has a message handler assigned
to it. The message handlers are the matching engine, bro-
ker controller and client bindings. A diagram of the broker
internals is provided in Fig. 2.

���������
����	�
�� ��

�����

��������
���	�
�� ���
��������
���	�
� ���
���������
����	�
� ��
���������
���	�
� ����������������������

 �!#"%$'&#()+*
,-)#*.()+/#0 12,-33

4657
3857

9);:2<="�>?<;/�<+/ @ <'"A:.<="�>?<#/�<+/.B C�D (/�)+"E58 F9

1' G3

H�I

I-J%K�L=/.JE58 F9

4M<#N+0%B;<;N� O/2BPB+!;*2/;B

Figure 2: PADRES Broker Internals

2.3 Historic Data Access Description
The PADRES historic data access scheme was chosen pri-
marily for its transparency and flexibility. Unlike a stan-
dard subscription, a historic subscription has a specified
time range that is not in the future, and contains a special
attribute which guarantees that historic data will not be
received by regular subscribers whose subscriptions overlap
the historic one. All operators allowed in standard subscrip-
tions are also supported in historic subscriptions.

Historic databases are attached to brokers as clients using a
database binding as shown in Fig 2. Each database issues
a subscription to its broker with appropriate {[class, =,

81

DB CONTROL], [DatabaseID, =, DB1]} predicates. A user
can cause a database to begin storing certain publications by
issuing a {[class, DB CONTROL],[DatabaseID, DB1], [cmd,
STORE], [content, ‘[class, =, foo], [attr, >, 20]’]}
command (as a publication). The database then advertises
{[class, =, foo], [attr, >, 20]} in anticipation of pub-
lishing historic events, and begins storing matching publi-
cations, such as {[class, foo], [attr, 28]} (converting
them to appropriate SQL INSERT statements first). If
the user later (after 12:00) subscribes to {[class, =, foo],
[time, >, 0800], [time, <, 1200]}, the database will re-
ceive the subscription (since it matches the database’s ad-
vertisement), perform an SQL SELECT for the appropriate
publications, and re-publish the stored publications in the
time interval (08:00, 12:00).

With historic data access functionality, PADRES allows cli-
ents to subscribe to future data, historic data, and hybrid
data (a combination of future and historic data). Both
atomic subscriptions and composite subscriptions (which are
used to express correlations) can be used to access future,
historic, or hybrid data.

Since all messages are routed using a content-based algo-
rithm, it is impossible to directly query the databases for
past data. In fact, it is not even possible for clients to know
which databases to query. Instead, since the historic data
access functionality is built entirely over p/s semantics, the
PADRES routing algorithm will automatically route queries
to the appropriate databases along the most efficient path.

There are many research challenges inherent in this historic
data access scheme. The placement of historic databases,
assignment of content specification to each database, and
avoiding duplicate historic publications are ongoing research
challenges.

3. RELATED WORK
There are several existing p/s systems that share some of
the features of PADRES. The PADRES content-based rout-
ing protocol is similar to the protocol used in SIENA [4], ex-
tended with the subscription merging concept of Rebeca [15].
PADRES relies on mandatory advertisements to optimize
subscription propagation. The PADRES matching engine is
built using the Rete-based rule engine from the Java Expert
System Shell [10]. There is virtually nothing in the litera-
ture about using the Rete algorithm or a rule engine in this
manner. The historic data access methods in PADRES is
unique in the p/s context. There is some work on propa-
gating historic publications, but only in the limited context
of mobile clients [6, 16], where historic data is retained by
either requiring each publisher to store its own publications,
or by having brokers manage the historic data based on time-
stamps. PADRES proposes a more flexible storage strategy,
supporting the ability to easily assign arbitrary portions of
the data space (specified using content-based subscriptions)
to each database.

Composite subscriptions are the p/s equivalent of composite
events. Composite events are an important concept for the
network management application context and have not re-
ceived much attention in the p/s literature [19]. An instance
of a composite event is formed by a temporal or causal com-

bination of constituent event instances. For example, the
composite event EC = (e1; e2)t uses a sequence operator to
specify that if event e1 is satisfied before e2 within time du-
ration t, the composite event EC is satisfied. In the context
of p/s this could be cast into a subscription – a composite
subscription [13] — concerned with the temporal state of
the matched subscription expressions. For example, a sub-
scription SC can be defined as (s1; s2)t, where s1 and s2

are conventional expressions comprising predicates. The se-
mantic of such a subscription is that the subscriber wants
to be notified only if events e1 and e2 occur within the time
duration t such that e1 satisfies s1 and e2 satisfies s2. Com-
posite events are described in [11, 5]. CEA [19] is a com-
posite event detection framework built as an extension of
an existing publish/subscribe middleware platform, whereas
PADRES builds the composite subscription processing and
composite event detection capability directly into the pub-
lish/subscribe layer.

Similar problems are addressed in stream-based distributed
applications [12]. However, one difference is that records
in data streams follow the same schema, while publications
may not have this property. Moreover, publications may
come from multiple data sources while a data stream has
one source. Exploring how data streams are processed in a
distributed environment may give us some insight for publi-
cation processing, especially for historic and composite sub-
scriptions.

4. SOFTWARE DEMONSTRATION
The objective of the software demonstration is to show the
PADRES system in operation. We will demonstrate a re-
tail application management scenario. This scenario demon-
strates a cyclic content-based p/s network with two databases
federated in the system. Customers and sales managers are
p/s clients who can publish and subscribe. This scenario
will highlight the benefits of composite, historic, and hybrid
subscriptions in the retail application context. The demon-
stration topology is shown in Fig. 3.

PADRES also provides a graphical interface which allows
a user or developer to visualize the network topology and
the message routing. The monitoring tool interacts with
the broker network by publishing and subscribing to mes-
sages. It does not have a special role and can be connected
to any broker in the network. An example of the graphi-
cal PADRES monitor in Fig. 4 shows a 100-broker overlay
running on PlanetLab [2].

4.1 Retail Management Scenario
In this scenario customers publish information such as pur-
chase orders, item returns, and cancellations. A customer
order, for example, may include attributes like the order ID,
customer ID, product name, price, user type1, order time,
etc. For example, a publication to place an order may look
like {[class, Order], [OrderID, C100-01], [CustomerID,
C100], [Item, shoes], [UserType, gold], [Time,‘Apr 3

07:33:21 2007’]}. Also, the machines in the retail system
report their status (overloaded, healthy, etc.) with pub-
lications such as {[class,SysInfo], [Status,overload],

1The user type includes general users, silver users, gold
users, and VIP users.

82

��������	
��	����
	�

����
��	

������������	 �
���
	

���������

SystemInfo
Database

SystemInfo
Database

Customer
Database
Customer
Database

Figure 3: PADRES Demo Architecture Figure 4: PADRES System Monitor

[Time,‘Apr 3 09:00:00 2007’]}. Therefore, publication
streams are produced by customers and server status re-
porting agents. A publication propagates from the publish-
ing client to its connecting broker and then into the network
based on the PRT built from the subscriptions in the net-
work. The routing of publications can be verified by notifi-
cations received by the clients who have issued subscriptions
that match the published data.

Databases act as subscribers and can be located at any bro-
ker in the system. The databases sink the matching publi-
cations for later access by sales managers, for auditing pur-
poses, archival, or any other use. The sales manager issues
regular subscriptions to be notified of future customer or-
ders and system information, historic subscriptions to re-
trieve past publications, hybrid subscriptions to access both
past and future publications, and composite subscriptions
to express correlations between data streams. The results
of these queries are displayed live in the sales manager GUI.
In another visualization, the start-up and materialization of
the overlay network can be observed from the monitor GUI.

Subscribe to future orders: A sales manager can express
interest in orders placed in the future for specific items us-
ing a subscription such as {[class, eq, Order], [OrderID,
isPresent, any]2, [CustomerID, isPresent, any], [Item,
eq, shoes], [UserType, isPresent, any]}. The subscrip-
tion will propagate from the sales manager client to its con-
necting broker and then into the network based on the SRT
formed using publishers’ advertisements. Matching publi-
cations (e.g., orders for shoes) issued after the subscription
will be routed to the sales manager. In addition to display-
ing the set of matching publications in the sales manager
GUI, the publication propagation is verified using a tracing
feature in the monitoring GUI that allows messages to be
tracked live as they traverse the network.

Subscribe to historic orders: A sales manager that wants
to retrieve orders placed in the past would issue a subscrip-
tion such as {[class, eq, Order], [OrderID, isPresent,

2The special operator isPresent means an attribute could be
any value in a given range.

any], [CustomerID, isPresent, any], [Time, <, now3]}.
A subscription for historic data is propagated through the
network to one or more databases that can execute the query
and the relevant data is propagated back to the subscribing
client. The query is routed through the network in the same
manner as a subscription for future data. Notably, since no
information about the databases’ addresses are available to
the client, the query is propagated along the SRT. The his-
toric orders re-published from databases are only received by
the subscriber, and other clients who may have issued over-
lapping queries will not receive duplicate orders. The effect
of the query can also be observed from the sales manager
GUI as it plays back the resulting data.

Subscribe to both future and historic orders: Orders
placed by a particular customer (in the past and in the fu-
ture) may also be interesting to the sales manager. Such
hybrid subscriptions are split into two parts by brokers: a
query on the historic data and a subscription for the future
data, effectively mapping to the above two cases.

Subscribe to correlated data: If a server becomes over-
loaded, a sales manager may wish to manually review or-
ders affected by the overload server. In this scenario, each
server is assigned to handle orders from one or more user
types, and so a subscription to express interest in orders
handled by overloaded servers is achieved with a compos-
ite subscription such as {{[class, eq, Order], [OrderID,
isPresent, any], [CustomerID, isPresent, any], [Time,
isPresent, any]}, [UserType, eq, $X4] & {[class,eq,
SysInfo], [UserType, eq, $X]}}. This composite subscrip-
tion is satisfied by two independent publication streams, and
is managed at an edge broker where it is split into its con-
stituent atomic subscriptions, which are then propagated
through the network in the usual manner. While the com-
posite subscription above only matches future data, it is also
possible to express such correlations against future, historic,
or hybrid data streams. The matching state of a compos-
ite subscription is evaluated at the edge broker who notifies

3The token now evaluates to the time when the query is
issued.
4Variables are bound to values in matching publications.

83

the client of correlated matches. As with the above subscrip-
tions, composite subscription matching can be demonstrated
using the client and monitor GUIs.

4.2 PADRES Matching Performance
We compare the rule-based matching engine implemented
in JESS with two other methods. One is a naive matching
algorithm which linearly scans the routing table to find the
matched subscriptions. The other is a matching algorithm
that is similar to the predicate counting algorithm [3]. This
algorithm calculates distinct predicates only once. Our ex-
periments show that the rule-based matching engine using a
Rete network is very efficient. It takes only 4.52ms to match
a publication against 200,000 subscriptions. This is 80 times
and 20 times faster that the naive approach and the count-
ing algorithm, respectively. The matching performance in-
dicates that the PADRES engine is suitable for large scale
p/s systems and can process a large number of publication
and subscription messages efficiently.

5. ACKNOWLEDGEMENTS
This research was funded in part by CFI, OIT,OCE, NSERC,
CA and Sun. We would like to thank former PADRES mem-
bers Eli Filder, Pengcheng Wan and Matt Medland for their
efforts.

6. REFERENCES
[1] http://padres.msrg.toronto.edu.
[2] https://www.planet-lab.org/.
[3] G. Ashayer, H. Leung, and H.-A. Jacobsen. Predicate

matching and subscription matching in
publish/subscribe systems. In DEBS’02 Workshop at
ICDCS’02, Vienna, Austria, 2002.

[4] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf.
Design and evaluation of a wide-area event
notification service. ACM Transactions on Computer
Systems, 19(3):332–383, 2001.

[5] S. Chakravarthy and D. Mishra. Snoop: An expressive
event specification language for active databases. Data
and Knowledge Engineering, 14(1):1–26, 1994.

[6] M. Cilia, L. Fiege, C.Haul, A.Zeidler, and A. P.
Buchmann. Looking into the Past: Enhancing Mobile
Publish/Subscribe Middleware. In Proceedings of 2nd
International Workshop on Distributed Event-Based
Systems (DEBS’03). IEEE Computer Society, 2003.

[7] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira,
K. A. Ross, and D. Shasha. Filtering algorithms and
implementation for very fast publish/subscribe
systems. SIGMOD Record (ACM Special Interest
Group on Management of Data), 30(2):115–126, 2001.

[8] E. Fidler, H.-A. Jacobsen, G. Li, , and S. Mankovski.
Distributed publish/subscribe for workflow
management. International Conference on Feature
Interactions in Telecommunications and Software
Systems (ICFI’05), Leisester, UK, 2005.

[9] C. L. Forgy. Rete: A fast algorithm for the many
pattern/many object pattern match problem.
Artificial Intelligence, 19(1):17–37, 1982.

[10] E. J. Friedman-Hill. Jess, The Rule Engine for the
Java Platform.
http://herzberg.ca.sandia.gov/jess/.

[11] N. H. Gehani, H. V. Jagadish, and O. Shmueli.
Composite Event Specification in Active Databases:
Model & Implementation. In Proceedings of the 18th
International Conference on Very Large Databases
(VLBD92), 1992.

[12] V. Kumar, Z. Cai, B. F. Cooper, and G. Eisenhauer.
IFLOW: Resource-aware overlays for composing and
managing distributed information flows. In EuroSys,
2006.

[13] G. Li and H.-A. Jacobsen. Composite subscriptions in
content-based publish/subscribe systems. In
ACM/IFIP/USENIX 6th International Middleware
Conference, Grenoble, France, 2005.

[14] H. Liu and H.-A. Jacobsen. A-topss: A
publish/subscribe system supporting imperfect
information processing.

[15] G. Mühl. Generic constraints for content-based
publish/subscribe systems. In C. Batini,
F. Giunchiglia, P. Giorgini, and M. Mecella, editors,
Proceedings of the 6th International Conference on
Cooperative Information Systems (CoopIS ’01),
volume 2172 of LNCS, pages 211–225, Trento, Italy,
2001. Springer-Verlag.

[16] G. Mühl, A. Ulbrich, K. Herrmann, and T. Weis.
Disseminating information to mobile clients using
publish-subscribe. IEEE Internet Computing,
8(3):46–53, 2004.

[17] M. Petrovic, I. Burcea, and H.-A. Jacobsen. S-ToPSS -
A Semantic Publish/Subscribe System. In Proceedings
of the 29th International Conference on Very Large
Databases, Berlin, Germany, September 2003.

[18] M. Petrovic, H. Liu, and H.-A. Jacobsen. G-ToPSS:
fast filtering of graph-based metadata. In WWW,
pages 539–547, New York, NY, USA, 2005. ACM
Press.

[19] P. R. Pietzuch, B. Shand, and J. Bacon. Composite
event detection as a generic middleware extension.
IEEE Network Magazine, Special Issue on Middleware
Technologies for Future Communication Networks,
January/February 2004.

84

