
Re-factoring Middleware Systems: A Case Study

Charles Zhang and Hans-Arno Jacobsen

Department of Electrical and Computer Engineering
and Department of Computer Science

University of Toronto
10 King’s College Circle

Toronto, Ontario, Canada
{czhang,jacobsen}@eecg.toronto.edu

Abstract. Aspect oriented programming brings us new design perspec-
tives since it permits the superimpositions of multiple abstraction mod-
els on top of one another. It is a very powerful technique in separat-
ing and simplifying design concerns. In this paper, we provide detailed
descriptions of our aspect oriented re-factoring of ORBacus, an indus-
trial strength CORBA implementation. The re-factored features are the
dynamic programming interface, support for portable interceptors, in-
vocations of local objects. Their associated IDL-level re-factorization is
addressed by an aspect-aware IDL compiler. In addition, we present the
quantification for the changes in terms of both the structural complex-
ity and the runtime performance. The aspect oriented re-factorization
proves that AOP is capable of composing non-trivial functionality of
middleware in a superimposing manner. The final ”woven” system is
able to correctly provide both the fundamental functionality and the
”aspectized” functionality with negligible overhead and leaner architec-
ture. Furthermore, the ”aspectized” feature can be configured in and out
during compile-time, which greatly enhances the configurability of the
architecture.

1 Introduction

In recent years, the adoption of middleware systems such as Web Services, .NET,
J2EE and CORBA are no longer limited to traditional enterprise computing
platforms. A very large family of emerging application domains, such as control
platforms, smart devices, and networking equipments, require middleware to sup-
port special computational characteristics such as real-time, stringent resource
constraints, high availability, and high performance. For example, middleware
systems are used on the Cisco ONS 15454 optical transport platform to manage
hardware customizations and communications among the management software
and hardware drivers [14]. Middleware is being used as the software bus for
subunits in the submarine combat control systems by the US Navy [4].

The fast broadening of the application spectrum has brought many diffi-
cult challenges to the design of middleware. We observe that one of the most
prominent problems is that the architecture of middleware constantly struggles

between two conflicting goals: generality and specialization. Generality means
vendors desire to support as many application domains as possible by incor-
porating a large set of features in their middleware implementations. As direct
consequence, these systems usually require large memory spaces and abundant
computing resources. For example, ORBacus [15], one of the Java implemen-
tations of CORBA [8], requires around 7 megabytes of memory1. The C-based
CORBA implementation ORBit [7] requires at least 2MB of memory space.
Therefore, it is very expensive to deploy these types of middleware systems on
many handheld devices or wireless devices. This is because, for example, com-
mercial handheld devices typically support memory size of a few mega-bytes
with limited processor power. 2. The computation resource in most cell phones
is even more constrained3.

To accommodate these computing environments with stringent resource con-
straints and special runtime requirements, middleware architects often choose
to specialize the architecture of middleware in order to optimize its performance
for domain specific characteristics such as real time, small memory space, high
availability, and high performance. As a result, for the same technology, there
often exist multiple specifications, various branches of code bases, and different
implementations. Each of these implementations require a tremendous amount
of effort to develop and to maintain. It is a challenge for the vendor to ensure
that the distributed computing properties are consistent across many different
versions of the same technology. It is also a challenge for users of middleware
to well understand the differences and, although not always possible, to match
specific implementations with their specific needs.

Recent research such as OpenCOM [12] and DynamicTAO [10] mainly aim
at improving the configurability and the adaptability of middleware by introduc-
ing new software engineering techniques like component based architecture and
reflection. Astley et al. [3] achieve middleware customization through techniques
based on separation of communication styles from protocols and a framework for
protocol composition. LegORB [13] and Universally Interoperable Core (UIC)4

are middleware platforms designed for hand-held devices, which allow for inter-
operability with standard platforms. Both offer static and dynamic configuration
and aim to maintain a small memory footprint by only offering the functionality
an application actually needs. The QuO project at BBN Technologies constitutes
a framework supporting the development of distributed applications with QoS
requirements (see [11] for an example). QuO supports a number of description
languages, referred to as Quality Description Languages (QDL). The QDLs are
used to specify client-side QoS needs, regions of possible level of QoS, system
1 This includes the JVM memory footprint. Classes of ORBacus take more than 4MB

of memory. This is estimated by comparing the size of ORBacus runtime with a
simple Java program.

2 The new Palm M515 devices support 8M of memory and operate at 33MHz. http:
//www.palm.com/products/palmm515/m515ds.pdf

3 Cypress corporation predicts in 1999 that newer cell phones would have SDRAM of
4M. See MoBL: The New Mobile SRAM. Cypress Whitepaper

4 http://www.ubi-core.com/

conditions that need to be monitored, certain behavior desired by clients, and
QoS conditions [11]. Further extensions of these languages are envisioned to also
be able to define available system resources and their status. Loyall et al. [11]
interpret these different description languages as aspect languages that are pro-
cessed by a code generator to assemble a runtime environment supporting the
desired and expected quality of service by client and server in a distributed ap-
plication. Zinky et al. [18] further elaborate on the issue of adaptive middleware
code that cross-cuts the platform’s functional decomposition. It is illustrated
that aspect orientation could be used to manage the QoS of a connection in a
distributed application. The QuO approach to specifying QoS guarantees is very
powerful. However, the focus in the QuO project lies on managing communi-
cation QoS, which are important aspects for distributed applications, but QuO
dose not address the problem of re-factoring a legacy middleware platform to
make it configurable and customizable for a particular application domain or
even application, which is the focus of our work.

Our approach differs from the afore described work as we believe that it is
more concrete and effective to study the benefit of applying AOP to the legacy
architecture of middleware. This is because, as AOP claims, conventional decom-
position methods cannot modularize crosscutting concerns and, therefore, cause
a considerable degree of logic tangling and concern scattering. Following this
theoretical conjecture, we first provided quantification of aspects in legacy mid-
dleware systems [16, 17]. We proved, through the method of aspect mining and
aspect oriented re-factorization, that concern crosscutting is an inherent prob-
lem in CORBA-based middleware systems implemented by conventional means.
In this paper, we complement our previous work by presenting an architectural
view of this aspect oriented re-factorization work. We describe, in UML diagrams
and code examples, how a number of non-trivial internal features of middleware
are captured in a separate set of aspect modules. We also present a prototype of
the aspect-aware interface definition language (IDL) compiler, which performs
the aspect oriented re-factorization at the stub/skeleton generation stage.

The rest of the paper is organized as follows: Section 2 introduces the new
language features of AspectJ [1], the aspect oriented language we use to per-
form the re-factoring. Section 3 presents a detailed description of building four
major CORBA features using AspectJ for the ORBacus implementation. It also
includes the evaluation, which reflects both architectural changes and the per-
formance effects of the aspect oriented implementations. In contrast to [16], we,
here, present aggregated results to quantify the total sum of changes and to
illustrate the benefit of our approach in a different perspective.

2 Aspect Oriented Programming and AspectJ

Aspect oriented programming offers an alternative design paradigm, which ach-
ieves a very high degree of separation of concerns in software development.
“Aspects tend not to be units of the system’s functional decomposition, but
rather be properties that affect the performance or semantics of the components

in systemic ways.” [9] Examples of such properties include security, reliability,
manageability, and more [5]. The existence of aspects is attributed to handling
crosscutting concerns using the traditional “vertical” decomposition paradigms.
AOP overcomes the limitations of traditional programming paradigms by provid-
ing language level facilities to modularize these systematic properties as separate
development activities. The AOP compiler is capable of producing the final sys-
tem by merging the aspect modules and the primary functionalities together.
We employ the following AOP artifacts to address problems in the middleware
design.

Component language. A component language is used for performing the primary
decomposition. It can be any regular programming languages such as Java
or C.

Aspect language. The aspect language defines logic units that can be used to
compose aspects into modules. Representative aspect languages are AspectJ [1]
and Hyper/J [2]. We can use these languages to implement crosscutting con-
cerns.

Aspect weaver. The responsibility of an aspect weaver is to instrument the com-
ponent program with aspect programs to produce a final system. In the
context of middleware architecture, the implementations of both the core
functionality of middleware and the features as aspects can be defined sep-
arately and coexist in the final “woven” system.

There are a number of aspect-oriented languages. Hyper/J supports multi-
dimensional programming by allowing programmers to compose the system dif-
ferently according to specific concerns in Java. The HyperJ compiler performs
bytecode transformations to generate different final systems according to ex-
traction specifications. Each extraction is analogously termed as “hyperslicing”.
AspectJ [1], designed as an extension of the Java language, is a mature as-
pect oriented programming language. AspectJ provides “pointcut” constructs
to designate a collection of interception points in the execution flow of software
systems. AspectJ also provides method-like constructs called advices, such as
“before”, “after”, and “proceed”. These constructs can contain normal Java
code, which gets executed before, after, or in place of the interception points des-
ignated by the “piontcut” constructs. It also contains inter-type declarations,
also called introductions, which are used to declare new members (fields, meth-
ods, and constructors) in other types. In the later sections, we illustrate in detail
how these special constructs can be used to re-factor crosscutting concerns in
middleware systems.

3 Aspect Oriented Re-factorization of CORBA

We have chosen CORBA as our case study because CORBA has been addressing
middleware concerns for over a decade. Its architecture reflects distinct evolution
cycles in the domain of middleware and can be treated as an excellent example of
traditional decomposition approaches. CORBA is a long term standardization

effort by OMG5. We use the ORBacus CORBA code base as our case study.
ORBacus is an industrial-strength and open source CORBA implementation.
The version used for the re-factoring is 4.1.1. It follows the Open Connector
Interface (OCI) architectural model, which provides further standardization of
the internal structures of the Orb.

In this section we use a number of software engineering metrics to track the
changes resulting from re-factoring the ORBacus code base with aspects. We
present the detailed re-factoring of the following ORBacus features: dynamic
programming interface, support for portable interceptors, and invocation of lo-
cal servers. To support the re-factoring at the IDL and stub layer, we describe
an AOP-based design of an aspect-aware IDL compiler. We then present the
quantification as the result of factoring out specific features from the ORBacus
implementation. We also discuss the limitations of our aspect-oriented imple-
mentation.

3.1 Quantification Metrics

Metrics are measures for the quality of software designs. We think it is ap-
propriate to use a combination of metrics to address various properties of the
“aspectized” architecture, including both the structural metrics, which directly
reflect the cost of development and maintenance, and the runtime metrics, which
reflect the cost of adopting the technology. The structural metrics include cyclo-
matic complexity, size, weight of class, and coupling between classes. Cyclomatic
complexity is an index which measures the complexity of the control flow in a
program. The size measures the number of lines of executable code. The weight
of class refers to the number of methods in a class definition. The coupling metric
measures the number of references to other classes in a particular class. please
refer to [16] for a detailed discussion and the collection method of these metrics.
To measure the response time of the broker, we divide the total time for the
roundtrip of a request into four intervals: Interval A: Client-side marshalling
Interval B: Server-side unmarshalling and dispatching. Interval C: Server-
side marshalling.Interval D: Client-side unmarshalling.It is necessary for the
aspect oriented re-factoring to at least preserve the response time of the broker.
In the case of having crosscutting features factored out, AOP re-factorization is
expected to decrease the processing time due to the simplification of program
logic.

3.2 AOP Based Performance Measurement

Each of the four intervals in the traversal of the middleware stack requires mea-
surements taken at many different points in the execution path of ORBacus. To
avoid changing the ORBacus code for these different measurements, we write
the timing code in Java and define four sets of pointcuts in AspectJ. To obtain
high-resolution time, we use a simple C-based timing tool written in Java Native
5 Object Management Group. http://www.omg.org

Interfaces. Since the instrumentation code for time measurement is nicely cap-
tured in one module, it also becomes convenient to perform more advanced sta-
tistical analysis of the response time. The inserted calls to aspect methods incur
slight performance overhead in the order of a few microseconds. This overhead
is eliminated when performing comparative analysis. To verify the correctness of
the re-factorization, we adopted the demonstration code, which is a part of the
standard ORBacus source distribution as test cases as well as for taking perfor-
mance measurements. The re-factored Orb is transparent to the test programs.
The stack traversal intervals are measured in microseconds and computed as the
average of 100,000 remote invocations on a Pentium III 1GHz Linux worksta-
tion. Each remote invocation involves an integer message sent from the client
process to the server. The server also responds with an integer message.

3.3 Code Transformation

As the first step in the re-factorization, we need to identify, before re-factorization,
the presence of a particular crosscutting property in two forms, the implemen-
tation structure of the property and the crosscutting structure for that property
with the primary decomposition model. Therefore, the tangled code is trans-
formed into three class groupings in the AOP implementation, namely primary
classes, aspect implementation classes, and the weaving classes. The transfor-
mation is illustrated by Figure 1, where the outside box on the left depicts that
the original implementation is one monolithic entity. The primary model and
the aspect model coexist in a single structure with parts intersecting among
each other. The package diagrams on the right presents a clear division of struc-
tures. The importance of such division is that it allows all three components to
be designed, tested and evolved with unprecedented independence and freedom.
We use the package diagrams in Figure 1 to illustrate the hierarchical structure
and the major types of relationship between aspect packages and the component
program, using the dynamic programming interface as an example.

Fig. 1. (1) Code transformation for re-factoring. (2) Package organization for re-
factorizat

3.1 Dynamic Programming Interface A dynamic programming model al-
lows an application to be designed without prior knowledge of the interface
definitions of the invoked objects. Instead, invocations on a remote interface
can be composed during runtime. In middleware platforms, where the primary
programming model is static, the support for the dynamic programming model
crosscuts the entire architecture. Our AOP based re-factoring of the dynamic
programming model consists of two parts, the client-side Dynamic Invocation
Interface (DII) and the server-side Dynamic Skeleton Interface (DSI).

Dynamic invocation interface (DII) The client-side facility for the dynamic
programming model is supported through the implementations of the interface
org.omg.CORBA.Request and MultiRequestSender. Those two class types are
taken out of the original implementation and grouped under the aspect im-
plementation package for DII. We then identify, in the primary decomposition
model, the places where operations of classes need to acquire or to exploit the
knowledge of these class types. These places are the crosscutting points of the
DII aspect. In AspectJ, these crosscutting points can be implemented as “join-
points” instead.

Special note on UML: Since UML has yet no direct support for AOP notions,
we model an “aspect” as a regular class. We model an advice as a regular class
method. We model “Introduction” constructs as regular attributes and meth-
ods. Their names are prefixed with the names of the classes within which these
attributes and methods are declared. Due to the special construct of advice,
most UML tools would generate some oddities on the diagram.

Figure 2 presents the UML diagram of the aspect implementation of the
DII. As a concrete mapping of Figure 1, the AOP implementation involves three
packages. The primary program package on the left represents the original im-
plementation of the ORB objects with the logic of the DII removed. The DII
code is placed in the package on the right as the aspect implementation. The
package organization of these classes is left intact. The package in the middle
of the diagram includes the “weaving” modules which define how the aspect
implementation of the DII interacts with the primary program. The “weaving”

<<aspect>>
ORBDII

+ORBInstance.multiRequestSender_: MultiRequestSender
+ORBInstance.getMultiRequestSender(): MultiRequestSender
+after(ORB_impl orb,...,):execution(initialize(...))():
+ORB_impl.send_multiple_request_oneway()(): void
+ORB_impl.send_multiple_request_deferred()(): void
+ORB_impl.poll_next_response()(): boolean
+ORB_impl.get_next_response()():

<<aspect>>
DowncallStubDII

+DowncallStub.createDIIDowncall(op:String): Downcall

<<aspect>>
DelegateDii

+around(Delegate d,...,):execution(Delegate.create_request(...,))(): Request

aspect.dii.weave

Weave Package Primary Program

 com.ooc

Aspect Implementation

com.ooc.CORBA.Request

 com.ooc

ORBInstance

ORB_impl
+initialize()():

DowncallStub
+create_request()(): Request

Delegate

com.ooc.MultiRequestSender

Fig. 2. UML Diagram of The DII Aspect Implementation

modules in the UML diagram shows that the aspectization of the DII involves
four classes in the Orb, namely, ORB impl, ORBInstance, DowncallStub and
Delegate. To interpret the diagram for the aspect.dii.weave package, we use
the aspect module ORBDII as an example. In the aspect module ORBDII, an extra
field MultiRequestSender and an additional method getMultiRequestSender
are added to the class ORBInstance to support the sending of multiple DII re-
quests. Extra code is executed after the execution of the initialize method of
the ORB impl class to perform DII specific initializations during the ORB start-
up time. Four DII related methods are also declared in the class ORB impl to
support DII operations. In other aspect modules, we use the “inter-type declara-
tions” to inject the downcall creation logic for dynamically composed downcalls.
We use “around” to change the behavior of the request creation in the Delegate
class.

Figure 3 shows a major fragment of the aspect module ORBDII responsi-
ble for sending multiple DII requests. In this code snippet, lines 7-12 declare
a new attribute and a new method to support multiple DII request sending in
class ORBInstance. Lines 14-19 create the runtime instance of the new attribute
multiRequestSender “after” the initialization work of ORB impl finishes. Lines
21-28 enable the DII multiple request sending capability of ORB impl by adding
new application programming interface (API) send multiple requests oneway.

Dynamic skeleton interface (DSI) The server side facility for the dynamic pro-
gramming model is supported through the ORBacus implementations of the
OMG interfaces including ServerRequest and DynamicImplemenation. We first
remove these two class types and group them under the aspect implementation
package. Figure 4 presents the organization of the classes for the AOP implemen-
tation of DSI. As in the case of DII, the “aspect.dsi.weave” package defines

how DSI implementation is added back to the regular ORB implementations.
This package identifies the crosscutting points which are implemented as follows:

1. We used the “around” construct to replace the request dispatching call with
an alternative implementation which dispatches client requests to a dynamic
server implementation.

2. ORBacus prohibits the direct invocations for DSI server implementations.
We use the “around” construct to check whether an invocation is towards a
dynamic implementation preceding the normal invocation process in order
to prevent direct invocation.

To illustrate how DSI is implemented, we present the complete AspectJ code
in figure 5 for weaving the checking logic into the class ActiveObjectOnlyStrategy,
an activity described previously in the second item.

package aspect.dii.weave; 1

//imports are omitted 2

privileged aspect ORBDII 3

{ 4

//introduce a new field multirequest sender in ORBInstance.This field is 5

//initialized by ORB Impl,which is executed before ORBInstance 6

private MultiRequestSender ORBInstance.multiRequestSender ; 7

8

public MultiRequestSender ORBInstance.getMultiRequestSender() 9

{ 10

return multiRequestSender ; 11

} 12

13

after(ORB impl orb,org.omg.CORBA.StringSeqHolder args,. .,): 14

execution(private void initialize(org.omg.CORBA.StringSeqHolder,. . ., 15

String, int, java.util.Properties, int, int, int)) 16

&&target(orb)&&args(//omitted){ 17

orb.orbInstance .multiRequestSender = new MultiRequestSender(); 18

} 19

20

public synchronized void 21

ORB impl.send multiple requests oneway(Request[] requests){ 22

if(destroy) throw 23

new org.omg.CORBA.OBJECT NOT EXIST("ORB is destroyed"); 24

com.ooc.OB.MultiRequestSender multi = 25

this.orbInstance .getMultiRequestSender(); 26

multi.sendMultipleRequestsOneway(requests); 27

} 28

} 29

Fig. 3. DII: Multiple request sending

<<aspect>>
ActiveObjectOnlyStrategyDSI

+around(ActiveObjectOnlyStrategy ao,...,):execution(CompleteDirectStubImpl(...)(): DirectServant

<<aspect>>
ServantDispatcherDSI

+around(ServantDispatcher dispatcher,...):call(dispatch())(op:String): void

aspect.dsi.weave

Weave Package Primary Program Aspect Implementation

org.omg.DynamicImplementation

org.omg

com.ooc.CORBA.ServerRequest

com.ooc

 com.ooc

 OBPortableServer

ActiveObjectOnlyStrategy

ServantDispatcher

Fig. 4. UML Diagram of The DSI Aspect Implementation

package aspect.dsi.weave; 1

privileged aspect ActiveObjectOnlyStrategyDSI 2

{ 3

DirectServant around(ActiveObjectOnlyStrategy ao, . . .,) 4

: execution(protected DirectServant ActiveObjectOnlyStrategy. 5

completeDirectStubImpl(org.omg.PortableServer.POA, . . .)) 6

&&target(ao)&&args(. . .) 7

{ 8

if(servant instanceof org.omg.PortableServer.DynamicImplementation){ 9

return null; 10

} 11

return proceed(ao,poa,rawoid,servant,policies); 12

} 13

} 14

Fig. 5. Dynamic Skeleton Interface

3.2 Invocation of Collocated Objects The key abstraction provided by
middleware systems is the transparency of the location of server objects. Loca-
tion transparency allows remote services to be invoked in the same fashion as
calling a method on an object while performing marshalling and unmarshalling
behind the scene. Some CORBA implementations optimize the calling process
to avoid unnecessary marshal/unmarshal work in the case where server objects
are deployed or migrated into the same process as the client. In ORBacus, the
optimization logic is an integral part of the request processing process, which is
designed primarily for making remote invocations. We believe the optimization
for in-process server objects in ORBacus is logically orthogonal to its remote
invocation mechanism. Therefore, we identify the optimization for local invoca-
tions as an aspect of ORBacus implementation of CORBA.

In ORBacus terms, in-process objects are referred to as collocated objects.
To distinguish between normal remote invocation calls and calls to collocated
servers, ORBacus uses CollocatedClient and CollocatedServer to handle corre-
sponding request processing for the client and server respectively. We completely
decouple these class types from the ORBacus source and moved them into the
aspect package.

In ORBacus, the collocation invocation is mainly implemented in the object
initialization phase for both the client and the server. We present the AOP imple-
mentation of local server invocation in the UML diagram in Figure 6. The mech-

anism of collocation invocation is implemented by the aspect.collo.weave
package which includes the following actions:

1. The ”around” construct in ClientManagerCo weaves into the class Client-
Manager the client-side logic of checking whether the object reference is
pointing to a collocated server. If yes, a different communication model is
set up to avoid marshalling and network operations.

<<aspect>>
ClientManagerCo

+around(ClientManager cm, ...):execution(expose(..))()

<<aspect>>
ServerManagerCo

+ServerManager.collocatedServer_: CollocatedServer
+ServerManager.getCollocatedServer(op:String): CollocatedServer
+after(ServerManager sm,...):execution(ServerManager.new(...))()
+before(ServerManager sm):execution(finalize())()
+after(ServerManager sm):execution(destroy())()

aspect.collo.weave

Weave Package Primary Program Aspect Implementation

 com.ooc

 OB

CollocatedClient

CollocatedServer

<<aspect>>
POAManagerCo

+POAManager_impl._OB_getCollocatedServer(): CollocatedServer

 com.ooc

 OB

ClientManager

ServerManager

POAManager

Fig. 6. UML Diagram of Aspect Implementation for Collocated Invocations

2. The ServerManagerCo aspect first adds a new attribute of type Collocated-
Server to the class ServerManager. The “after” construct creates the run-
time instance of the CollocatedServer after the constructor of Server-
Manager is executed. The second “after” advice disposes the Collocated-
Server. The “before” construct verifies the validity of the Collocated-
Server instance.

3. The POAManagerCo aspect first adds a method to allow the access to the
CollocatedServers.

Figure 7 presents the AspectJ code of POAManagerCo. Lines 5-9 declare one
attribute and the accessor for that attribute in the class ServerManager. Lines
11-14 enforce some condition checking before the finalize method is invoked.
Lines 16-20 create the runtime instance of the collocated server and add it to the
list of servers. Lines 22-25 destroy the runtime instance for garbage collection as
an additional step after the destroy method in the base implementation finishes
execution.

3.3 Support for portable interceptors Portable Interceptors are hooks into
the Orb through which CORBA services can intercept various stages during the
request process. They are observer [6] style entities. Interceptors allow a third
party to plug in additional Orb functionalities such as transaction support and
security.

In ORBacus, the functionality of portable interceptors is implemented through
three categories of classes. They include the classes related to implementing the
interceptor interfaces defined by the OMG. They also include ORBacus spe-
cific interceptor initialization classes and request processing classes that support
portable interceptors. We separated classes in these three categories from OR-
Bacus and grouped them under the aspect implementation package. Figure 8
presents the UML diagram for the portable interceptor implementation as as-
pect programs. The crosscutting points where the primary ORB model tangles

package aspect.collocation.weave; 1

import com.ooc.OB.*; 2

privileged aspect ServerManagerCo 3

{ 4

private CollocatedServer ServerManager.collocatedServer ; 5

public synchronized CollocatedServer 6

ServerManager.getCollocatedServer(){ 7

return collocatedServer ; 8

} 9

10

before(ServerManager sm):execution(* ServerManager.finalize() 11

throws Throwable)&&target(sm){ 12

Assert. OB assert(sm.collocatedServer == null); 13

} 14

15

after(ServerManager sm,. . .): execution(ServerManager.new(. . .)) 16

&&target(sm)&&args(. . .){ 17

sm.collocatedServer = new CollocatedServer(oaInterface, concModel); 18

sm.allServers .addElement(sm.collocatedServer); 19

} 20

21

after(ServerManager sm):execution(public synchronized void destroy()) 22

&&target(sm){ 23

sm.collocatedServer = null; 24

} 25

} 26

Fig. 7. ServerManager Collocation Invocation

<<aspect>>
ORBIS

+ORBInstance.interceptorManager_: PIManager
+ORBInstance.getPIManager(): PIManager
+after(ORB_impl orb,...,):execution(initialize(...))()
+after(ORB_impl orb,...):execution(instantiateORBInitializers(...))()

<<aspect>>
DowncallStubIS

+around(DowncallStub ds, ...):execution(createDowncall(..))(): Downcall
+around(DowncallStub ds,...):execution(createArgsDowncall(...))(): Downcall
+around(DowncallStub ds,...):execution(createDIIDowncall(...))(): Downcall

<<aspect>>
ServerRequestIS

+around(ServerRequest sq,...,):execution(arguments(...,))(): Request
+around(ServerRequest sq,...):execution(set_result)()

aspect.pi.weave

Weave Package Primary Program

 com.ooc

Aspect Implementation

 OB

PIArgsDowncall

PIDIIDowncall

PIManager

PIDowncall

PIUpcall

 PortableInterceptor

ArgumentStrategyDII

ArgumentStrategy

ArgumentStrategyNull

ArgumentStrategySII

ClientRequestInfo_impl

Current_impl

IMRIORInterceptor_impl

RequestInfo_impl

ServerRequestInfo_impl
<<aspect>>

POAIS

+before(POA_impl poa,...):execution(createIORTemplate(...))()
+after(POA_impl poa,...):execution(createIORTemplate(...))(): Downcall
+after(POA_impl poa):execution(completeDestroy())()
+around(POA_impl,...):execution(_OB_createUpcall(...))(): Upcall

 com.ooc

ORBInstance

ORB_impl

DowncallStub

ServerRequest

POAIS

 OBPortableInterceptor

ORBInitInfo_impl

Fig. 8. UML Diagram of Portable Interceptor Support Aspect Implementation

with support for portable interceptors correspond to the standardized behaviour
of portable interceptor. That is, an ORB implementation must allow intercep-
tions made to the client request process, the server request process and the
creation process of server objects. Since the “weaving” implementation of the
portable interceptor suppport is rather complex, we present a summary of our
AOP implementations as follows:

1. The portable interceptors can intercept the request sending process before it
starts. Therefore, in ORBacus, the request sending process, i.e., the downcall
creation process, needs to check if any client request interceptors are regis-
tered. If so, a downcall object is initialized with the portable interceptor
information. Instead of letting ORBacus perform the checking regardless of
whether portable interceptors are used or not, we moved the code segments
into the aspect program in a ”around” construct. As the result, the ”aspec-
tized” ORBacus only performs necessary checks if a portable interceptor is
required for a particular application.

2. A similar situation occurs in the server-side request dispatching process, e.g.,
the upcall creation process. We moved the checking and upcall creation code
into the aspect implementation. That makes the server request processing
leaner and more precise. That is, it needs to reference and to handle portable
interceptors only when it is necessary.

3. The portable object adaptor (POA) plays a key role in the process of object
creation. It needs to notify all the interceptors if there are interceptors reg-
istered for intercepting the object creation process. Consequently, the POA
code needs to have extra control paths in order to support that requirement.
We moved that checking logic into the aspect code and implemented the
same logic via the ”after” construct. That is, following the completion of ob-
ject creation, the checking code is executed only if the support for portable
interceptors is required.

4. The ORB also contains the initialization code for loading portable inter-
ceptors and registering them with the ORB. We moved the corresponding
code into the aspect implementation such that, if the interceptor support
is not needed, it is no longer necessary for the ORB to perform the extra
initialization procedures.

We present two code snippets since the implementation of portable interceptor
support is more complex than previous cases. Figure 9 is part of the POA related
implementation of interceptor support. As defined in the OMG specification,
compliant ORB implementations must notify interceptors of the object creation
time. Lines 3-9 notify the portable interceptor manager “before” creating the
internet object reference (IOR). The after advice notifies the manager when
IOR is created (lines 11-16).

Figure 10 adds the support for portable interceptors to the class ORB. Firstly, the
aspect code adds the new attribute PIManager and the corresponding accessor

package aspect.pi.weave; 1

privileged aspect POAIS{ 2

before(POA impl poa,IORInfo impl iorInfoImpl): 3

execution(private void POA impl. 4

createIORTemplate(com.ooc.PortableInterceptor.IORInfo impl)) 5

&&target(poa)&&args(iorInfoImpl){ 6

com.ooc.OB.PIManager piManager = poa.orbInstance .getPIManager(); 7

piManager.establishComponents(poa.iorInfo); 8

} 9

10

after(POA impl poa,. . .):execution(private void POA impl. 11

createIORTemplate(com.ooc.PortableInterceptor.IORInfo impl)) 12

&&target(poa)&&args(iorInfoImpl){ 13

com.ooc.OB.PIManager piManager = poa.orbInstance .getPIManager(); 14

piManager.componentsEstablished(poa.iorInfo); 15

} 16

} 17

Fig. 9. POA Portable Interceptor Support

to the class ORB(Lines 5 - 8). PIManager is responsible for managing the intercep-
tors registered in the ORB. Lines 13-15 create the runtime instance of PIManager
as the first task after the ORB finishes initialization. Lines 18-24 instantiate a
codeset interceptor and register it with the manager. Lines 26-38 invoke cus-
tomized ORBInitializers after the normal initialization of ORB finishes. The
last line (line 39) notifies all the interceptors registered with PIManager of the
event that the ORB has been initialized.

3.4 Aspect-Aware IDL Compiler

Our re-factoring work not only resolve the crosscutting of the internal architec-
ture, but also aims at simplifying the user’s view of the Orb by developing the
aspect-aware IDL compiler. This is because certain CORBA features, such as
the dynamic programming interface and the collocated server invocation, require
special treatment and support in the CORBA API, i.e., the standardized IDL
definitions and the associated language mappings. The complete re-factorization
of these features must include the associated API code. This is because even if
these features are not required by particular applications, the associated API
code still contributes to the complexity of the overall API set and consumes
computing resources.

In this case study, we explore the functionality of the aspect-aware IDL com-
piler by implementing two additional tasks as compared to the ordinary stub
compilers during the language translation. These tasks are API splitting and

package aspect.pi.weave; 1

privileged aspect ORBIS{ 2

//introduce a new field PIManager in ORBInstance. This field is initialized by 3

//ORB Impl, which is executed before ORBInstance 4

private PIManager ORBInstance.interceptorManager =null; 5

public PIManager ORBInstance.getPIManager(){ 6

return interceptorManager ; 7

} 8

9

after(ORB impl orb, . . .,):execution(private void 10

initialize(StringSeqHolder, String, . . .))&&target(orb)&&args(. . .) 11

{ 12

PIManager piManager = new PIManager(orb); 13

piManager.setORBInstance(orb.orbInstance); 14

orb.orbInstance .interceptorManager =piManager; 15

// Initialize Portable Interceptors - this must be done after installing the OCI 16

//plug-ins to allow an ORBInitializer or interceptor to make a remote invocation 17

try{ 18

piManager.addIORInterceptor(new com.ooc.OB. 19

CodeSetIORInterceptor impl(nativeCs, nativeWcs),false); 20

} 21

catch(DuplicateName ex){ 22

com.ooc.OB.Assert. OB assert(false); 23

} 24

//set up ORBInitInfo 25

if(!orb.orbInitializers .isEmpty()){ 26

com.ooc.OBPortableInterceptor.ORBInitInfo impl info = 27

new com.ooc.OBPortableInterceptor.ORBInitInfo impl(. . .); 28

java.util.Enumeration e = orb.orbInitializers .elements(); 29

while(e.hasMoreElements()){ 30

((ORBInitializer)e.nextElement()).pre init(info); 31

} 32

e = orb.orbInitializers .elements(); 33

while(e.hasMoreElements()){ 34

((ORBInitializer)e.nextElement()).post init(info); 35

} 36

info. OB destroy(); 37

} 38

piManager.setupComplete(); 39

} 40

Fig. 10. ORB Portable Interceptor Support

Local Invocation Optimization. Both features require modifications to the IDL
compiler code in a crosscutting manner and can therefore be implemented using
AspectJ. Our implementation is experimental and based on the JacORB IDL
compiler since the source of ORBacus IDL compiler is not part of the open source
distribution. The implementation consists of the following modifications added
to JacORB compiler using AspectJ:

1. Two additional compiler options are added. The “-split” argument is fol-
lowed by a subset of original IDL definitions, which corresponds to the fea-
tures that are already factored out. This tells the compiler to generate these
IDL definitions as AspectJ modules consisting of “inter-type declarations”s.
At the same time, it skips the same API defined in the original IDL defini-
tion. In this way, we do not change the original IDL definition. The “-local”
argument is designed to eliminate parts of the generated stub code deciding
if the optimization of collocated invocations are needed. These additional
compiler options are added in an “after” advice, which parses the command
line arguments and sets the corresponding flags in the parser.

2. The stub code for the original IDL definition is split into two sets of modules,
the standard language mapping and AspectJ modules. This is done through
three steps: 1. The parser first reads the IDL definitions following the “-
split” switch and stores the declarations of the interfaces and methods; 2.
An “around” advice is defined to replace the code generation method in the
IDL compiler. It checks if this particular interface needs to be split by doing
a lookup from the storage. If the interface contains operations supporting
the “aspectized” feature, a separate print stream is set up for generating
the AspectJ code. Upon the completion of code generation for the interface,
the print stream generates the enclosing AspectJ symbols if necessary; 3.
Before generating the stub code for methods, a “before” advice uses the
alternative output stream set up earlier if the method is to be translated
into AspectJ “inter-type declaration”s. Figure 11 illustrates a simple usage
of this feature. The original IDL definitions contain two methods, where the
underlined method supports a re-factored feature. This method is re-defined
using IDL syntax in a separate file and read by the compiler following the
“-split” option. The generated Java language mapping as well as the AspectJ
code is shown at the bottom of the figure.

3. The “-local” switch is to tell our compiler to simplify the control logic of the
stub code if the feature of optimizing for invoking collocated servers is not
needed. In our current implementation, using the switch will eliminate the
conditional statements in the stub code, which checks if the remote server is
actually located in-process. This is done by replacing the original translation
code with our own methods defined in a “around” advice.

Our IDL compiler implementation has the following properties: 1. We achieve
the maximum reuse of existing code as no modifications is made to the original
IDL compiler code. 2. New compiler features can be added and removed very
easily as they are all implemented in AspectJ. In addition, since these features
are implemented in separate aspect modules, they can be independently added or

interface ORB
{
 string object_to_string
(in Object obj);

}
Request get_next_response();

interface ORB {
 Request
 get_next_response();
}

Corba.idl DIIaspect.idl

beavis# idl2java -split diiaspect.idl Corba.idl

abstract public class ORB {
public abstract String
object_to_string
(org.omg.Object obj);
}

package aop.org.omg.CORBA;
import org.omg.CORBA.ORB;
public aspect ORB_aop_dii {
 public abstract Request
 ORB.get_next_response();
}

ORB.java ORB_Aspect_DII.java

Fig. 11. Aspect-aware IDL Compiler

removed without affecting others. 3. Existing IDL language features are sufficient
for our compiler to generate “aspectized” code. No aspect oriented extension are
needed to support the “aspectization” at the IDL definition level.

Our implementation introduces some overhead to the compilation process
because we need to check, for every method, whether the AspectJ code needs
to be generated. Testing shows a lookup from storage of interfaces which are to
be generated in the aspect code takes around 20 microseconds. The overhead is
therefore not noticeable even compiling a very large set of IDL files.

3.5 Re-factorization Results

Table 1 presents the measurements of both the structural metrics and the run-
time metrics for the AOP re-factoring of dynamic programming interface, portable
interceptor support, collocation invocation. The structural metrics are collected
on the ORBacus implementation prior to and after the AOP re-factoring. Ta-
ble 1 reports the accumulated reductions for every re-factored features. The
data indicates that, through the aspect oriented re-factorization, we reduce the
size of ORBacus by more than two thousand lines and around 70 references to
other class types. The structure of ORBacus becomes less complex with features
taken out and still capable of supporting transparent remote invocations with
improved response time to the original implementation. Table 1 also reports
the runtime interval measurements for the four segments of the ORBacus stack
traversal. The response time is measured using the original implementation, the
“woven” implementation(re-combined), and the implementation with features
factored out(re-factored). The runtime performance of the three Orbs is largely
equivalent. The sizes are in lines of executing code; weight is in number of meth-
ods; interval is in micro-seconds. Other metrics are indexes, see earlier section
for an interpretation.

Structural Metrics Interval
CCN Size Weight Coupling A B C D

Dynamic Invocation Interface

Original 25.4 2000 200 203.35 105 125 37 59

Re-factored 23.8 1490 188.35 196.55 108 124 35 59

Dynamic Skeleton Interface

Original 7.28 369 18.66 28 79 126 43 8

Re-factored 6.92 262 18.66 27 76 119 41 9

Portable Interceptor Support

Original 24.66 4218 160.8 208.5 78 118 42 8

Re-factored 24.0 2909 160.2 194.28 79 122 42 9

Collocation Invocation

Original 15.66 638 33.99 63 79 126 43 8

Re-factored 15.00 435 32.01 57.99 76 126 41 7

Overall

Original 105 7320 412.5 528.25 76 126 37 9

Re-factored 101 4899 400 458.25 76 123 37 9

Re-combined n/a n/a n/a n/a 74 123 37 8

Table 1. Metric Matrix for the re-factorization of DII, DSI, Portable Interceptor, Col-
location Invocation, and overall assessment (CCN - Cyclomatic Complexity Number.)

3.6 Limitations

During our aspect oriented re-factoring of ORBacus, we have also realized some
limitations in our approach due to insufficient research in the area, overwhelming
programming effort and limitations in the tool support.

1. We did not completely factor out class types such as Any and NVList, which
are used widely for other purpose in addition to the dynamic programming
interface, such as the request context passing. While failing to factor these
types out does not prevent us from evaluating the aspect oriented approach,
we defer the work until future research when it is necessary to exactly quan-
tify the aspect of dynamic programming interface.

2. Our re-factorization of the CORBA features in the generated stub code and
API code is not complete. Our aspect-aware IDL compiler is of a proto-
type nature and needs to be extended. This is due to the fact that new
aspects of CORBA are still being discovered. The role and the features of
the aspect-aware IDL compiler ought to be thoroughly analyzed. We defer
this discussion to future work. As the consequence, the user code is still
able to use the corresponding OMG interfaces for a feature that is possibly
factored out. The Orb throws exceptions during runtime to flag that these
features do not exist.

3. We decided not to collect the memory usage due to the fact that our ”aspec-
tization” experiment is conducted on the Java platform. We do not have an
accurate memory profiling tool that allows us to the monitor memory usages
of the application objects. Also the expense of running the full JVM makes
the memory improvements achieved by our AOP re-factoring almost trivial.

4 Conclusion

We believe that adaptability and configurability are essential characteristics of
middleware substrates. Those two qualities require a very high level of modular-
ity in the middleware architecture. Traditional software architectural approaches
exhibit serious limitations in preserving the modularity in the process of estab-
lishing decomposition models for crosscutting design concerns. Those limitations
correspond to the scattering phenomena in the code. The aspect oriented pro-
gramming approach has brought new perspectives to software decomposition
techniques. The concept of aspect allows us to compose, with respect to the
primary decomposition model, the most appropriate solution for each design
requirement. By weaving the aspects together, we are able to improve the mod-
ularity of final systems in the dimension of aspects.

To better approximate the benefit of designing middleware with AOP, we use
AspectJ to re-factor a number of aspects. The implementations which exist in
multiple places of the original code are grouped within a few aspect units. The
successful re-factorization shows that middleware systems are able to provide
the fundamental services with certain pervasive features factored out or factored
in. Aspect oriented re-factorization has shown its superb capability of loading
and unloading pervasive features of the system, which is not possible in legacy
implementations. The ”woven” system transparently supports these re-factored
features. The runtime performance is equivalent to the original implementation.

In the light of our experimentation, we are very optimistic that aspect ori-
ented programming will show more promises in conquering the complexity of
middleware architecture. In our future work, we will try to gain more experi-
ence in terms of applying aspect oriented development methodologies. We are
exploring various techniques to help us define horizontal decomposition proce-
dures more concretely. We will eventually use all these experience to design a
fully aspect oriented middleware platform.

References

1. AspectJ. URL: http://www.eclipse.org/aspectj.
2. Hyper/J. URL: http://www.alphaworks.ibm.com/tech/hyperj.
3. M. Astley, D.C. Sturman, and G. A. Agha. Customizable Middleware for Modular

Software. ACM Communications, May 2001.
4. Louis DiPalma and Robert Kelly. Applying CORBA in a contemporary embedded

military combat system. OMG’s Second Workshop on Real-time And Embedded
Distributed Object Computing, June 2001.

5. Robert Filman. Achieving ilities. URL: http://ic.arc.nasa.gov/~filman/text/
oif/wcsa-achieving-ilities.pdf.

6. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison-Wesley, 1995.

7. Gnome. ORBit. URL: http://www.gnome.org/projects/ORBit2/.
8. Object Management Group. The common object request broker: Architecture and

specification. December 2001.
9. G. Kiczales. Aspect-oriented programming. ACM Computing Surveys (CSUR),

28(4), 1996.
10. Fabio Kon, Manual Roman, Ping Liu, Jina Mao, Tomonori Yamane, Luiz Claudio

Magalhaes, and Roy H. Campell. Monitoring, Security, and Dynamic Configuration
with the dynamicTAO Reflective ORB. IFIP/ACM International Conference on
Distributed Systems Platforms and Open Distributed Processing, 2000.

11. Joseph P. Loyall, David E. Bakken, Richard E. Schantz, John A. Zinky, David A.
Karr, Rodrigo Vanegas, and Kenneth R. Anderson. QoS aspect languages and their
runtime integration. In Fourth Workshop on Languages, Compilers, and Run-time
Systems for Scalable Computers. Lecture Notes in Computer Science, Vol. 1511,
Springer-Verlag, Pittsburgh, Pennsylvania, USA, May28-30, 1998.

12. Clarke M., Blair G., Coulson G., and Parlavantzas N. An efficient component
model for the construction of adaptive middleware. IFIP / ACM International
Conference on Distributed Systems Platforms (Middleware’2001), November 2001.

13. M. Rom, D. Mickunas, F. Kon, and R. H. Campbell. LegORB and Ubiquitous
Corba. In IFIP/ACM Middleware’2000 Workshop on Reflective Middleware, pages
1–2, Palisades, NY, USA, 2000.

14. Cisco Systems. Cisco ons 15327 - sonet multiservice platform. URL: http://www.
cisco.com/univercd/cc/td/doc/pcat/15327.htm.

15. Iona Technologies. ORBacus. URL: http://www.iona.com/products/orbacus_
home.htm.

16. Charles Zhang and Hans-Arno Jacobsen. Quantifying Aspects in Middleware Plat-
forms. In 2nd International Conference on Aspect Oriented Systems and Design,
pages 130–139, Boston, MA, March 2003.

17. Charles Zhang and Hans-Arno Jacobsen. Re-factoring middleware with aspects.
IEEE Transactions on Parallel and Distributed Systems, 2003. (accepted for pub-
lication).

18. John Zinky, Joe Loyall, Partha Pal, Richard Shapiro, Richard Schantz, James
Megquier, Michael Atighetchi, Craig Rodrigues, and David Karr. An AOP chal-
lenge problem: Managing QoS on iteractions between distributed objects. In White
Paper for ECOOP 2000 Workshop on Aspects & Dimensions of Concerns, April
2000.

